FAIRWaRk

FINAL DAI-DSS PROTOTYPE,
DOCUMENTATION AND TEST
REPORT

D4.3

Editor Name Marlene Mayr (BOC)
Submission Date February 28, 2025
Version 1.0

State FINAL
Confidentially Level | PU

Co-funded by the Horizon Europe
Framework Programme of the European Union

www.fairwork-project.eu

EXECUTIVE SUMMARY

This deliverable, “D4.3 — Final DAI-DSS Prototype, Documentation and Test Report”, provides a comprehensive
overview of the final implementation of the DAI-DSS. Building on the foundations established in “D4.1 — DAI-DSS
Architecture and Initial Documentation and Test Report” and “D4.2 — Initial DAI-DSS Prototype”, this document
details the integration, orchestration, and deployment of the components for Al-based decision-making within
industrial applications. The prototype is designed to enhance operational efficiency and support decision-making
for various scenarios. In this last version, the DAI-DSS Prototype extends its applicability across multiple industrial
use cases, including workforce allocation, production planning, machine maintenance, and validation of documents.
The demonstration materials can be accessed via the following link:

https://innovationshop.fairwork-project.eu/

By leveraging a modular and scalable architecture, the system facilitates the interaction between Al services, Uls,
and structured data repositories. The implementation of DAI-DSS consists of several integrated building blocks:

The DAI-DSS User Interface collects multiple Ul components for the different scenarios and Al services to enable
stakeholders to visualize data, interact with decision-making tools, and monitor industrial workflows.

The DAI-DSS Orchestrator component serves as the central coordination engine, managing workflows,
microservices, and Al-driven recommendations to ensure the system operation. It includes different approaches
that range from centralized to decentralized prototypes.

The DAI-DSS Configurator consists of a tool designed to enhance decision support systems through configuration
and integration frameworks. It consists of the Configuration Framework, which assists in creating decision models
and strategies, and the Configuration Integration Framework, which generates system configurations. It allows for
microservices and workflow configuration, featuring an interface with a wizard for Ul components combination.

The DAI-DSS Knowledge Base is highlighted as a central data repository, storing user properties, sensor data,
and processed data. It plays a key role in the system's data flow, integrating with the Configurator and using REST
AP for data retrieval.

The DAI-DSS Al Enrichment incorporates various decision-making techniques and Al services, including neural
networks, decision trees, constraint programming, Multi-Agent Systems (MAS), Large Language Model (LLM), and
retrieval-augmented generation (RAG), to provide tailored recommendations and automation support.

The final DAI-DSS Prototype delivers several advancements over previous iterations by 1) supporting Al-driven
decisions that aim to enhance decision-making and information access with different Al techniques while including
reflections on Al and data reliability, 2) ensuring scalability and adaptability of the system by its component-based
architecture that allows for integration with various applications and expansion into new domains, 3) advancing
data utilization and processing with efficient storage, retrieval, and processing of industrial data, in the Knowledge
Base and Vector Databases and 4) proposing a flexible approach to enable the extension with new prototypes.

The DAI-DSS marks a step forward in Al-powered decision support for industrial environments. Its modular and
scalable architecture provides a foundation for future Al enhancements, data integration, and broader enterprise
adoption. In particular, the results and prototypes aim to be used as starting point for use cases in the area of robots
in manufacturing settings for example supporting decisons in maintenance or optimal robot-task and line allocation.
Furthermore, findings and implementations documented in this deliverable contribute to advancing intelligent, and
effective decision-support solutions in industrial ecosystems, and aim to contribute to future European Al research
and reference architectures.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 2 of 108

https://innovationshop.fairwork-project.eu/

PROJECT CONTEXT

Workpackage WP4: Development of DAI-DSS

T4.1: Architecture, Documentation and Testing
T4.2: Development of DAI-DSS Orchestrator
Task T4.3: Development of DAI-DSS Configurator
T4.4: Development of DAI-DSS Knowledge Base
T4.5: Enrichment of DAI-DSS with Al Algorithms

Dependencies WP2, WP3, WP5

Contributors and Reviewers

Contributors

Reviewers

Herwig Zeiner, Lucas Paletta, Julia Tschuden, Michael
Schneeberger (JR)

Gustavo Vieira, Rui Fernandes (MORE)
Johanna Lauwigi, Alexander Nasuta (RWTH)

Damiano Falcioni, Marlene Mayr (BOC)
Christian Muck (OMILAB)
Rishyank Chevuri (JOTNE)

Hans Zhou (RWTH)
Rishyank Chevuri (JOTNE)
Damiano Falcioni (BOC)

Approved by: Robert Woitsch [BOC], as FAIRWork coordinator

Version History

Version Date Authors

Sections Affected

1.0 February 28, 2025 FAIRWork Consortium ALL

Copyright © 2025 BOC and other members of the FAIRWork Consortium

www.fairwork-project.eu

Page 3 of 108

Copyright Statement - Restricted Content

This document does not represent the opinion of the European Community, and the European Community is not
responsible for any use that might be made of its content.

This is a restricted deliverable that is provided to the community under the license Attribution-No Derivative Works
3.0 Unported defined by creative commons http://creativecommons.org

You are free:

to share within the restricted community — to copy, distribute and transmit the work within the
restricted community

Under the following conditions:

® Attribution — You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

@ No Derivative Works — You may not alter, transform, or build upon this work.

With the understanding that:
Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.

Other Rights — In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights;
The author's moral rights;

Rights other persons may have either in the work itself or in how the work is used, such as publicity or
privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license terms of this work.
This is a human-readable summary of the Legal Code available online at:

http://creativecommons.org/licenses/by-nd/3.0/

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 4 of 108

http://creativecommons.org/licenses/by-nd/3.0/

TABLE OF CONTENT

1 INEFOAUCTION ... 10
1.1 Purpose 0f the DOCUMENTc.oviciccce bbb 10
1.2 DOCUMENT STTUCIUIE ... 10
1.3 Change HISTOMYecveveiceecce bbbt bbbttt en s 10

2 FAIRWOIK USE CASES........euvuiiiiiirisctcisiset ittt 12
21 Assist Decisions about Fair Worker AlIOCALION.ccririerieeee e 13
2.2 Assist Decisions about Production PIanning..........cocerrrnniesessseseeeseeiseseiseees 13
2.3 Assist Decisions for TrUCK LOAAINGcvvivcvcueieiiiciiecce st eb s 14
2.4 Improve Information Access to Support MaintenancCe...........covveerrrnccneess s 14
25 Enhance Documentation, Validation and Information ACCESS...........couereirririinnienniernieseienns 15

251 Improve Reliability of “Documentation about Quality Check”...........ccccovvrirvnrrriercee 15
2.5.2 Support Validation of Calibration DOCUMENLSceereereirriiiiccsssssse e 15
2.5.3 Improve Information Access to Cleanroom Compliance Requirements...........ccccoevvvvvrvcecenrennnnnn, 16

3 Building Blocks and their INtegration..........cccvvciieciiiiii e 17

3.1 Integrating USEr INTEITACES.........coceieiiiccctc ettt bbbt 18
311 Order Overview Ul COMPONENLccovirierieirisriieceieieie sttt 19
3.1.2 Worker Overview Ul COMPONENL...........cccciuieiiiiieieccretee ettt 19
3.1.3 Allocation Proposal through Al Resource Allocation Service Ul Component..............cccccucvevennnnen. 20
3.1.4 Production Planning Service Ul COMPONENL..........coriiiriiiiriieirneiseeesieseses e 22
3.1.5 Truck Loading Ul COMPONENL........coiiiriiieiricirieccieisee e 23
3.1.6 Machine Maintenance Ul COMPONENT..........ccccoiiiiiictiice et 24
3.1.7 Document Transformation Ul COMPONENL.........ccoovirireersieccees s 25
3.1.8 Document Compliance Ul COMPONENTcccuiiiiiiiiccictee ettt 26
3.1.9 Calibration Document Validation Ul COMPONENTccccuiviiiiiiiiicecseecee e 28
3110 OULIOOK ..ottt 30

3.2 Orchestration Of MICTOSEIVICES..........c.uu it 30
3.21 Workflow-based Orchestration ... 30
3.2.2 Multi-Agent Orchestrationcciiriircec e 36
323 OULIOOK ..ottt 41

3.3 Integrating CoONfIQUIATION...........cuiuiiii b 41
3.3.1 Multi-Agent Orchestrator ConfIQUIationccoeerirnienee e 41
3.3.2 Configuration FTamMEWOIKceuriuiuriiieiricieisieiee et 42
3.3.3 Configuration Integration FramEWOIK...........cccriruiirieiniiieiecss s 44
B34 OULIOOK ..ottt 47

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 5 of 108

34 Integrating the KNOWIEAQE BaSEcucueueirieiiiscs ettt 47

34 REHADIIEY ..ot 51
342 OUHOOK ... 54

3.5 INTEGrAtiNg Al-SEIVICES.......ouiececteteis ettt bbb bbb aeaebne 54
3.5.1 Support the Understanding of Decisions through Conceptual Modelling............cccovvvriirnicnnen. 54
3.5.2 Decision Support through DECISION TrEEccvvveiircicieerrise e 64
3.5.3 Resource Allocation using Neural NEWOIKSccoceieiiiiiicicesssssee e 67
3.54 Resource Allocation using Linear Sum AsSignment SOIVET ..o 68
3.5.5 Production Planning Service with @ Hybrid Approach.............ccocovveneinesnennccceee 70
3.56 Resource Allocation MAS-DASEA...........criiiiiriiiiiiriee s 72
3.5.7 Truck LOAAING SEIVICEvuiiiircieieiieis ettt 79
3.5.8 Support Machine Maintenance using RAG and LLM..........cccovviieinnnincccee e 80
3.59 Document Transformation USING LLIM..........cccorviiiiiiciice e 83
3.5.10 Support Compliance for Clean Room using RAG and LLM...........ccccovvvnicccnenn e, 86
3.5.11 Calibration Certification SEIVICE..........coriiuiiiiirerce e 88

3.6 Real World Data ProVIdErs...........coeiicesi et 89
3.6.1 INTEIlIGENT SENSOT BOXESoivcvcvcteteiiieetcte ettt bbbt bbbttt 89

3.7 Summary of the DAI-DSS BUildiNg BIOCKSc.cuiueiriririieireisceseesie s 92

4 Prototype DEPIOYMENLcviiieiiieie ettt e e ettt e e e e nnnas 95
4.1 Deployment of Configuration Integration Environment, Workflow Engine and User Interfaces 97
4.2 Al-SErviCes DEPIOYMENLc.cuiiiiiiieieiie e 99
421 DeciSion ServiCe SEVEr 1 aNd 2.........oueuiiriiiiiriciieeise s 99
422 AWS-AEpIOYEd Al-SEIVICEScuiveverereiiiieieeceete ettt bbb 101

4.3 Cost Factors for LLM DeplOYMENL ..o 101
4.4 Knowledge Base DepIOYMENL...........ccvieiiiriiceesiesee s 102

5 Extending DAI-DSS for New USe Case SCENAMOScervreurirrrririreieirireieinessesesreeseessesssessssesessssssesssssseens 103
5.1 Extending Workflows and USer INTErfacescovueuveirirniieiniiescesceseesee s 103
5.2 Extending Decision Services through Conceptual Modellingoccvieernieninniesniescienes 103
5.3 Extending DAI-DSS Capabilities through Al-Enrichment SErviCes...........couveririiirieniniieniees 104
5.4 Extending Real-World Data ProViSIONINGccveurirririiieineineeisscssisissssseese s 105
5.5 Extending the KNOWIEAGE BaSE ... 105

6 Summary, Conclusion and OUHIOOKccouueiriiieriieiceeie s 106
T REEIENCES ... bbb 108

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 6 of 108

LIST OF FIGURES

Figure 1: Overview of DAI-DSS High-Level ArchiteCture............c.cviriiiicce s 17
Figure 2: Data Flow in DAI-DSS FrameWOrKccccciiiiiririiiincceietete ettt ss st 18
Figure 3: Order Overview Ul COMPONENT ..o 19
Figure 4: Worker Overview and Manual Assignment Ul COMPONENLccccovvivceieiiieicccee e 20
Figure 5: Multi-Agent AlIOCALION SEIVICE...........cciiiiiieirre s 21
Figure 6: LINSUMSOIVEr AlIOCAtION SEIVICE.........cociieiiiiiicece st 21
Figure 7: Rule-based AllOCAtION SEIVICE..........ccriiiriieiriieiiee e 22
Figure 8: Production Planning SEIVICEcccciieiiiiiiiicics sttt 22
Figure 9: 2D Verison of Truck Loading Ul COMPONENL...........coeuiurimiiriiiieinei e 23
Figure 10: 3D Version of Truck Loading Ul COMPONENL..........cccoviiiiciiitessisc et 23
Figure 11: Machine Maintenance INAeXing Ul ..ot s 24
Figure 12: Machine Maintenance QUENY Ul ...t 25
Figure 13: Document Transformation Ul ..o 26
Figure 14: Document Transformation Model RESUIL.............cccueriiiicciccee e 26
Figure 15: Document Compliance INAeXiNg Ul ..o 27
Figure 16: Document Compliance Information EXtraction ProCessccccocvviviiceeisseccccce e, 27
Figure 17: Document Compliance QUETY Ul...........coiiiiiiiccecs e 28
Figure 18: Calibration Validation Ul QULPULcccceueiiiiiiiciccsrcctcteie et 29
Figure 19: Workflow Enging Control PAGE...........ucueiiiiriieiiiceirceisceis st 30
Figure 20: Test Call of a Microservice Operation for retrieving Data from the Knowledge Base in the Microservice
731011 TP 31
Figure 21: Example of a Workflow Definition for retrieving Information from the Knowledge Base........................ 32
Figure 22: WOrkflow WOIKDENCN...........c.iviiiiieices b 32
Figure 23: Workflow EXCULION DELAIISc.cueeiecieiieicic s 33
Figure 24: Example of an API Call for triggering @ Workflow in POStMan............ccccvvvvinnncnnnceneeseeeees 34
Figure 25: Simplified WOrkflow DEfinitioncviiiiiice s 34
Figure 26: Execution Path of Workflow "dataset_crf_workloadbalance_kb".............cccocovnrnnnnneencenes 36
Figure 27: Available Endpoints t0 Registered USENS ..ot 37
Figure 28: Orchestrator ENAPOINES.........c.veiriiieiicesiessee st 37
Figure 29: Login ENAPOINt USAQEcuiviiiiiieiice et 38
Figure 30: SUCCESSUI LOGIN RESPONSEvuvuiieiecieiiieisiseie ettt 38
Figure 31: Login Endpoint Data MOGEISc.criuiiriiiiieiicesccese s s 38
Figure 32: Microservices Allocation Results Endpoint USAgE...........cceururrrnininieicensr e 39
Figure 33: Generic Parameters Structure to be used in the GET RequUeSt............ccovevricinicnncrccscees 39
FIigure 34: OUIDUE IMOTEL ...ttt 39
Figure 35: Production Planning Microservice Data MOGEL..............cviirinniinceeeseese s 40
Figure 36: MAS Orchestration Of MICIOSEIVICES ...t 41
Figure 37: Required AUthOrizZation HEAUETceiiiriieiceces s 41
Figure 38: POST ReqUESt Parameters..........c.iuiiiiiiiirieieisieesie st 42
Figure 39: Accessing Login Page of Modelling TOOL...........ccviiirirecesecesees s 43
Figure 40: Overview Experiment for Decision Service Configuration ... 43
Figure 41: OLIVE instance showing the Configuration ENVIrONMeNt.cccooiirinnenniesnceseescesnes 45
Figure 42: Example of Microservice DefinitioN. ... 46
Figure 43: Configuration Steps of creating @ Web AppliCation.cceverierineeseee s 47
Figure 44: Sequence Diagram for DAI-DSS Interactions Part 1. 49
Figure 45: Sequence Diagram for DAI-DSS Interactions Part 2............ccvvenieninnieneneeseeesiesens 50

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 7 of 108

Figure 46: Reference Data Library Definition ..o s 51

Figure 47: Breakdown Structure of the CRF USE CaSE........ccccuvvviiiicicicieesc et 52
Figure 48: Node System Properties — Metadata............ccoeriirirceeee s 52
Figure 49: Document System Properties - Metadata............ccccovviiiciceieccccee e 53
Figure 50: FLEX Data stored in the Knowledge Base ... 54
Figure 51: OLIVE User Interface for Resource Allocation EXperiment...........ccocovovceeinicccceees e, 56
Figure 52: OLIVE Interface for Testing the Line Assignment Assessment Operationccoooeveenicnnnnnes 56
Figure 53: DMN Model for the Worker Allocation USe Case..........ccccccvevireiiiiiiiccee e 57
Figure 54: Example DeCiSiON TaDIE...........cciiiiiice s 58
Figure 55: OLIVE WED INTEITACE.ccuiiiiciiecccee sttt 59
Figure 56: OLIVE Microservice Configuration INterface ..o 60
Figure 57: Example DMN Model with Microservice Definition Object...........ccoovvviceiiiicccceee e, 60
Figure 58: Attributes of the Microservice Definition Modelling Concept...........cooerernieinieincreeseses 62
Figure 59: OLIVE Controller INTEITACEccuivieeicteeseceeecte sttt st 63
Figure 60: OLIVE TeSt INTEIFACEc.eviiiieeriiicsice bbb 63
Figure 61: Triggering Decision Tree Functionality in the Modelling TOO............cccceeeieieiniiinnrsrsce e 65
Figure 62: Example of Decision Tree in the Modelling TOOI ... 66
Figure 63: Neural Network Resource AllOCALION..........cccviiiiirirrsceeeee et 67
FIgure 64: HISTOMC DAta.........c.evireiriiiciieeis bbb 68
Figure 65: Problem Instance in Linear Sum Assignment Graph Representationcccococveeveevivciccereennnn, 69
Figure 66: Extract of Production Plan (one line from several, two days from two Weeks)cccccovvevncninnnne 4
Figure 67: MAS-based Worker Allocation DYNamIC...........ccoceuiiiniicicicieiesse e 73
Figure 68: UML Sequence Diagram of the Multi-Agent-based Workload Balance.............cccccoevnvnncvnicininnnne 73
Figure 69: Worker Allocation Agent Message Exchange EXample.........ccoovvvvvivcceccininninnnsssse s 74
Figure 70: Watchdog Raising the Alarm...........ccceeiii s 76
Figure 71: Renegotiation to Comply with the Watchdog..........cceuiiriiee s 76
Figure 72: UML Sequence Diagram Updated for Renegotiation with the Watchdog Agent...........ccccoovvvieininnnee. 7
Figure 73: Watchdog Message Exchange after Renegotiation..............ccccerinieniesesceseeesess 78
Figure 74: Interface for the AGent-DAsed SEIVICEcvrrirrcr s 79
Figure 75: Concept for Maching MaintenanCeceuviriiiiiiee s 81
Figure 76: RAG Concept for External KNOWIEAGEc.oviveuriiiririceriesceeceseee s 81
Figure 77: Workflow for Machine Maintenance Prototype ..o 83
Figure 78: Document Transformation CONCEPL.........coueurirririirrcer s 84
Figure 79: Sample Output of Document Transformationccccvvceeeeinniiccces s 85
Figure 80: Model-based workflow for Document Transformation Prototype..........cccoevvievninnnnnneenceenens 85
Figure 81: Document Comparison Concept USING VECIOTS..........cvviureiiriiiirceisce s 87
Figure 82: FAIRWork Resilience Monitor, with a Sample Number of Estimations of Physiological (blue) and
Cognitive-emotional (red) Strain during a Time Course of 20 Days of a Potential Workercccocveveviiinnnns 90
Figure 83: Deployment Diagram DAI-DSS Prototype ..o 95
Figure 84: Ul Deployment and REgISIration............coviiiieiriiiesies et 99
Figure 85: Available Endpoints t0 Registered USENS ... 101
Figure 86: Knowledge Base Internal ArChifECIUIE ..o 102

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 8 of 108

LIST OF TABLES

Table 1: Overview of FAIRWOIK USE CaSES.........ccueuiieiiicectctcte ettt ettt aeaee 12
Table 2: Orchestration WOrKfIOWSccceiiiiiiicccs et 35
Table 3: Summary of DAI-DSS Building BIOCKScoiuiiiriiirieinie et 92
Table 4: SUMMArY OF the Al SEIVICEScvcveviiiiicces st aee 93
Table 5: Overview of the Individual Deployable COMPONENScccvviieiiieriieieiee s 97
Table 6: Deployment Components of Configuration EnVIronMeNt.............cccooevieeiieniceseesceeeesssees 98

LIST OF ABBREVIATIONS

Abbreviation Meaning

Al Artificial Intelligence

ANN/ NN Artificial Neural Networks

CP Constraint Programming

DAI-DSS Democratic Artificial Intelligence — Decision Support System
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
HW Hardware

LLM Large Language Model

MAS Multi-Agent System

MCTS Monte Carlo Tree Search

ML Machine Learning

RL Reinforced learning

RAG Retrieval Augmented Generation
SSH Secure Shell

SSL Secure Sockets Layer

SW Software

ul User Interface

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 9 of 108

1 INTRODUCTION

1.1 Purpose of the Document

This document provides the final implementation and prototype of the DAI-DSS of the FAIRWork project. Based on
the architecture proposed in ,D4.1 — DAI-DSS Architecture and Initial Documentation and Test Report* and the
initial prototype in “D4.2 — Initial DAI-DSS prototype” this deliverable captures and documents the updates and
advances resulting in the final prototype highlighting how the technologies explored in the project are integrated to
the DAI-DSS.

The main objective is to outline the final status of the methodologies and processes involved in developing and
implementing User Interfaces (Ul), Orchestration, Configuration, access to Knowledge Base, and Al services within
the DAI-DSS framework. The document intends to be a comprehensive guide for understanding how the system
operates including Al service integration, the role of conceptual modelling in decision-making, and deployment
strategies. It is aimed at stakeholders interested in the composition of the DAI-DSS, its functionalities, and how it
can be used in industry to support decision-making.

1.2 Document Structure

To provide a comprehensive overview of the final prototype, the document is organized into multiple key sections
ranging from a description of the use cases and problem setting to the development of the individual components
of the final DAI-DSS prototype.

As the prototype is extended with new services for other use cases besides “Worker Allocation”, in Section 2, a
recap of the use cases provided by FLEX and CRF is given. For understanding each use case is described by a
short overview of the problem setting and the proposed DAI-DSS solution.

In Section 3, the implementation of the architecture’s building blocks is approached. Starting with the Uls describing
the creation and combination of Ul components. Then the implementation of the DAI-DSS Orchestrator,
Configurator, Knowledge Base, and Al Enrichment including the reflection on Al service and data reliability are
presented. In Section 4, documentation on deploying the various prototypes, including Al services and Uls, is given.
This section covers the deployment of a modelling tool, experimental services, and the management and hosting
of Al services on servers.

In Section 5, some ideas for extending the DAI-DSS capabilities, and in Section 6 current developments and the
final status of the prototype are summarized and future directions are presented in the outlook.

1.3 Change History

All components described in D4.2 are included in D4.3 for completeness and readability reasons. Main changes
and updates of D4.3 are attributed to 1) the extension with further use cases besides worker allocation as well as
with additional Al algorithms, 2) the advances in the implementation and deployment of the distinctive building
blocks of the architecture, like the Ul, Configuration, Orchestration or Knowledge Base and 3) reflections about
reliability of Al and Data. Below the change history is presented differentiating between “updated components from
D4.2” and “newly added” ones.

The whole of Section 2 was added newly to recall the challenges of the existing use cases and to introduce the
new scenarios targeted by different Al services. Section 3 includes updates of the distinctive building blocks
detailing the final versions of the Uls, the Orchestration, the Configurations, and the Knowledge Base. Additionally,

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 10 of 108

Al services were added to broaden the focus of the initial DAI-DSS prototype from a single to multiple use cases.
The reliability sections were added as well. The following components were either updated from D4.2 or added
newly:

Section 3.1: Integrating User Interfaces

o 3.1.1 Order Overview Ul Component (updated from D4.2)

3.1.2 Worker Overview Ul Component (updated from D4.2)

3.1.3 Allocation proposal through Al Resource Allocation Service Ul Component (updated from D4.2)
3.1.4 Production Planning Service Ul Component (new)

3.1.5 Truck Loading Ul Component (new)

3.1.6 Document Transformation Ul Component (new)

3.1.7 Machine Maintenance Ul Component (new)

3.1.8 Document Compliance Ul Components (new)

3.1.9 Calibration Document Validation Ul Component (new)

Section 3.2: Orchestration of Microservices

O O O O O O O O

o 3.2.1 Workflow-based Orchestration (updated from D4.2)
o 3.2.2 Multi-Agent Orchestration (updated from D4.2)
Section 3.3: Integrating Configuration

o 3.3.1 Multi-Agent Orchestrator Configuration (new)

o 3.3.2 Configuration Framework (updated from D4.2)

o 3.3.3 Configuration Integration Framework (updated from D4.2)
Section 3.4: Integrating the Knowledge Base (updated from D4.2)

Section 3.5: Integrating Al services

3.5.1 Support the Understanding of Decisions through Conceptual Modelling (updated from D4.2)
3.5.2 Decision Support through Decision Tree (updated from D4.2)

3.5.3 Resource Allocation using Neural Networks (updated from D4.2)

3.5.4 Resource Allocation using Linear Sum Assignment Solver (updated from D4.2)

3.5.5 Production Planning Service with a Hybrid Approach (new)

3.5.6 Resource Allocation MAS-based (updated from D4.2 and extended with new service 3.5.6.2)
3.5.7 Truck Loading Service (new)

3.5.8 Support Machine Maintenance using RAG and LLM (new)

3.5.9 Document Transformation using LLM (new)

3.5.10 Support Compliance for Clean Room using RAG and LLM (new)

3.5.11 Calibration Certification Service (new)

Section 3.6: Real-World Data Providers (updated from D4.2)

O O O OO0 O o0 O o0 O O

Section 3.7: Summary of the DAI-DSS Building Blocks (new)

In Section 4, the updated deployment of the final DAI-DSS prototype is described and extended with new
components and services. The following components were updated or changed:

Section 4.1: Deployment of Configuration Integration Environment, Workflow Engine and User Interfaces

(updated from D4.2)
Section 4.2: Al-services Deployment

o 4.2.1 Decision Service Sever 1 and 2 (updated from D4.2 and new services)
o 4.2.2 AWS-deployed Al-services (new)
Section 4.3: Cost Factors for LLM Deployment (new)

Section 4.4: Knowledge Base Deployment (new)

Section 5 details the DAI-DSS components and their extension for new use cases. All subsections were updated
from D4.2. Section 6 provides the updated outlook and future directions of the DAI-DSS Prototype.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 11 of 108

2 FAIRWORK USE CASES

This section aims to recall the use cases and problem settings described in previous D2.1 and D5.1 and the new
use cases proposed by the use case partners CRF and FLEX. Each scenario includes an overview of the current
problem and the suggestion to target it through the DAI-DSS in section 3. Relevant scenarios of CRF include 1)
worker allocation by assisting decisions about fair worker allocation, 2) assistance in decisions for production
planning as well as 3) delay of material by assisting decisions about truck loading. Relevant scenarios for FLEX
are 1) to support machine maintenance through improving information access and 2) scenarios to enhance
documentation, validation and information access through a) improving the reliability of “Documentation about
Quality Check”, b) validation of calibration documents and c) improving information access to cleanroom
compliance requirements. The Table 1 summarizes the use cases which are covered by the Al algorithms.

Use Case

Workload
Balance

Production
Planning

Delay of Material

Machine
Maintenace

Document
Transformation

Compliance with
Clean Room
Regulations

Calibration
Document
Certification

Use Case
Partner

CRF

CRF

CRF

FLEX

FLEX

FLEX

FLEX

Scenario

Assist Decisions about Fair
Worker Allocation

Assist Decisions about
Production Planning

Assist Decisions for Truck
Loading

Improve Information Access
to Support Maintenance

Improve Reliability of
“Documentation about
Quality Check”

Improve Information Access
to Cleanroom Compliance
Requirements

Support Validation of
Calibration Documents

Al-Enrichment

(1) Support Understanding of Decisions
through Conceptual Modelling

(2) Decision Support through Decision Tree

(3) Resource Allocation using Neural
Networks

(4) Resource Allocation using Linear Sum
Assignment Solver

(5) Resource Allocation MAS-based

(6) Production Planning Service with a
Hybrid Approach

(7) Truck Loading Service

(8) Support Machine Maintenance using
RAG and LLM

(9) Document Transformation using LLM

(10) Support Compliance for Clean Room
using RAG and LLM

(11) Calibration Certification Service

Table 1: Overview of FAIRWork Use Cases

Copyright © 2025 BOC and other members of the FAIRWork Consortium

www.fairwork-project.eu

Page 12 of 108

2.1 Assist Decisions about Fair Worker Allocation

As introduced in previous deliverables (D2.1 and D5.1) this use case deals with the efficient allocation of workers
to production lines. The workers usually work in two shifts on different machines. In each shift, a fixed number of
specific parts have to be produced on each machine. These parts are produced by specific tasks on the machine
Each machine produces different parts, so each machine has different tasks. Dependent on the part to be produced
a different number of workers is necessary for the machine. Also, it is necessary to allocate the workers depending
on the shift plan and the task-to-machine allocation to the different machines. Allocating the workers to the different
machines is done by single humans based on experience. This can lead to situations where the same workers are
always allocated to the same tasks on the same machines. This can lead to problems if the workers feel these
tasks are harder to do than others.

DAI-DSS Solution Suggestion

The decision of the allocation is based on different factors such as the training of the worker, medical condition of
the worker, resilience of the worker, preference of the worker, tasks to be done, and availability of workers. It is
difficult for a human to take all these factors into account. However, technical systems with access to the
corresponding data can use this data to allocate workers taking all these factors into account. Therefore, we aim
for worker allocation services that take all these factors into account. Especially with the focus on the worker's
preferences and resilience, we aim to create a system that is felt to be fairer as it tries to fit all the preferences and
the resilience of the workers as well as possible. So that all workers are considered in the allocation. This scenario
is targeted by the Al services Support the Understanding of Decisions through Conceptual Modelling, Decision
Support through Decision Tree, Resource Allocation using Neural Networks, Resource Allocation using Linear Sum
Assignment Solver, Production Planning Service with a Hybrid Approach and the Resource Allocation MAS-based.

2.2 Assist Decisions about Production Planning

The production plan aims to define when which part is produced on which line in which quantity by whom. The
production plan should consider that all parts are produced close to the deadline so that they won't occupy storage
space for too long while also being produced on time. In order to allow high efficiency, the production plan should
avoid working overtime and also try to have lines running at full capacity during working hours. Those aims can
make the planning complex. This complexity is increased by unforeseen events as workers might be absent e.qg.
due to sickness. Also, sudden orders or line stops lack of resources, etc. can increase the complexity and create
the need to be able to adapt to changes on short notice. Especially sudden changes but also the demands from
different aspects are a challenge for the people creating the plan and make adaptions on short notice difficult.

DAI-DSS Solution Suggestion

FAIRWork solutions aim to provide a full production plan, including two things: The allocation of tasks to machines
and the allocation of workers to machines based on the different factors described in section 0. The allocation of
tasks to machines is based on factors such as the order list, which describes which parts have to be produced until
when for which customer. Additionally, it needs to include dates as to which parts can be produced on which
machine and at which time. All this together describes a flexible job shop problem that has to be solved. By solving
the flexible job shop problem and allocating workers to the machines, services tackling the production planning can
provide a useful addition for the plant by automatically creating production plans based on order lists, shift plans,
short notice adaptions, and fixed data saved in the knowledge base. This scenario is targeted by the Al service
Production Planning Service with a Hybrid Approach.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 13 of 108

2.3 Assist Decisions for Truck Loading

As introduced in previous deliverables (D2.1 and D5.1) this use case deals with efficient shipping to customers.
The shipping process aims to efficiently load materials into containers and transport them to customers. Delays in
material availability, production, or shipment can result in customers receiving their orders late. Each product
geometry requires specific container types for transportation. The shipping plan must consider the entire customer
order, which must be dispatched daily. Crucial decisions include selecting the optimal truck type for shipment and
determining how to load the containers to maximize truck capacity while ensuring that all geometries are included.
The process starts by evaluating the shipment's due date. Once the shipment is ready, containers are loaded, and
truck saturation is analyzed to ensure minimal free capacity. If saturation is low, alternative truck types are
evaluated. When no better alternatives exist, additional geometries might be included to improve truck utilization.
If this is not feasible, the customer is contacted to explore postponement options. This decision-making process
aims at optimal resource allocation while addressing customer expectations and operational efficiency.

DAI-DSS Solution Suggestion

A decision support system can streamline the shipping process by optimizing material and container allocation
within trucks. This system would analyze factors like order geometries, container types, truck capacities, and
shipment deadlines to create an efficient shipping plan. The tool would dynamically adjust for changes in order
requirements or truck availability, reducing costs and improving customer satisfaction. This scenario is targeted by
the Al service Truck Loading Service.

2.4 Improve Information Access to Support Maintenance

As already introduced in previous deliverables (D2.1 and D5.1) this use case aims to support technicians to fix
machine malfunctions. Due to the diverse problem settings, the machines' errors can range from simple operator
failures to complex technical issues. The time to solve the machine failures can vary between minutes to hours.
For the machine issues, the technicians can look up a solution procedure in different data sources. First, there is
the “Ispro-NG”, the current maintenance database also used as the task ticket system that contains information on
all tickets and their timestamps, machine types, duration to solve the issue, the error source, and corresponding
maintenance instructions etc. Second, there is an internal “Wiki System” for maintenance engineers to collect
information about issues on equipment and procedures as well as graphical descriptions of how engineers solved
errors in the past. Third, official documents from the manufacturers of equipment and machines such as operating
instructions, manuals, specifications and handbooks for product descriptions, safety requirements or installation
guidelines are stored in a specific database. The aim is to speed up the finding of appropriate solutions and reduce
the time and cost of breakdown.

DAI-DSS Solution Suggestion

As different pieces of information on machine errors or maintenance are available across multiple data sources,
the challenge is to improve the information access to support maintenance. The aim is to reduce the corrective
maintenance and machine breakdowns by receiving fast and correct proposals with the Al tool. Thus, the
requirement to support the decision-makers in this use case is to create a service that can access information from
the above-mentioned sources. There should be bidirectional communication available to communicate in written
form or with a speech module. This scenario is targeted by the Al service Support Machine Maintenance using
RAG and LLM.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 14 of 108

2.5 Enhance Documentation, Validation and Information Access

During the project, a use cases dealing with various compliance issues for organizations was identified. Therefore,
three different scenarios to support FLEX in compliance activities capture the needs for supporting workers in being
compliant regarding 1) transforming outdated and unstructured documents into the newly defined electronic Work
Instruction system (e-WI) template, 2) supporting employees with checking calibration documents and certification
and 3) help to ease history and versioning changes of official compliance regulations for their daily operations like
safety instructions for the clean room.

2.5.1 Improve Reliability of “Documentation about Quality Check”

Different types of documents, in various document formats and at diverse majority levels including outdated and
very unstructured documents can be found at FLEX. In particular, most of the station instruction cards (SICs) -
documenting the instructions on how to work at the individual stations in the factory — are paper-based. The
digitization of such documents is envisioned to contribute to the overall factory digitalization including the
implementation of appropriate systems. FLEX works on implementing an electronic work instruction system (e-WI).
Therefore, paper-based instructions have to be transformed into digital instructions which include as one major
aspect the conversion into a new electronic template that is required by the e-WI application. Among the major
expected benefits are the elimination of paper-based documents, improved revision control including the reduction
of mistakes caused by using wrong WI revision numbers as well as an increased approval process using electronic
signatures. Digitization has already started and the employees transferred the paper-based documents into Word
templates, however, using old and heterogenous formats. At the moment, around 27.000 SICs are used in an old
format. Manually transforming all of these documents so that they match with the new digital e-WI template requires
an enormous amount of human effort. In particular challenging are two aspects, which are (1) the huge diversity
and the complexity of the SICs and (2) the process of editing the instruction documents. First, SICs are specifically
tailored to each station in the FLEX production process flow, and even more critical, they are customized for
individual products and each product version. Second, SICs at FLEX are edited by numerous process engineers
over time. Those engineers have their different style of writing documentation, editing text, and including pictures
using Word files in unstructured .doc format. Not even all of them are using the same (outdated) template.

DAI-DSS Solution Suggestion

Here, a solution for automatic transformation to the new format can support reducing the manual conversion effort.
The idea is to develop an Al application that automatically converts the SICs from the old Word templates into the
new digital e-WI template to reduce human effort and errors as well as to save time. This scenario is targeted by
the Al service Document Transformation using LLM .

2.5.2 Support Validation of Calibration Documents

Verification of Calibration Certificates (CC) in PDF format is currently a manual, repetitive, time-consuming and
error-prone process. Each calibration certificate received from the calibration service provider must be carefully
checked for any discrepancies or missing or incorrect information. This check includes many critical data points,
including

¢ Instrumentinformation: model, type, manufacturer and serial number/ID of the instrument being calibrated.

o (Calibration dates: calibration date and calibration expiry date.

o Calibration results: the actual measured values and calibration results, including any deviations or
measurement uncertainties.

¢ Information on measuring equipment: details of the calibration of the measuring equipment used to ensure
traceability of the calibration.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 15 of 108

o Formal aspects: signatures of the issuer and approver, sequential page numbering of the certificate and
completeness of all pages.

Currently, all this information is checked manually by an employee. This process is not only time-consuming but
also prone to human error due to the large number of certificates to be checked. Overlooked errors can have serious
consequences, for example, if faulty measuring equipment remains in use and affects the quality of products or
services.

DAI-DSS Solution Suggestion

In order to optimize this process and address the issues mentioned above, the development of an application based
on an Al-based service is proposed. This application will replace the manual verification of critical information from
calibration certificates with an automated solution. The Al-based service should be able to analyze the certificates
and automatically generate a report listing any discrepancies, or missing or incorrect information found. This report
should provide the verifier with a quick and efficient overview of the potential problems with the certificate. This
scenario is targeted by the Al service Calibration Certification Service .

2.5.3 Improve Information Access to Cleanroom Compliance Requirements

As the performance of the cleanroom production is a matter of its proper operation and regulatory adherence, many
critical aspects must be considered by the staff, which directly impact the performance of the cleanroom. Although
employees are informed about changes and have to confirm them, it happens very often that changes are not
adhered to because they are unconsciously not taken into account. This is due to the aspect that the documents
for the behavior and procedures in the cleanroom change relatively often in their regulatory requirements.
Additionally, the compliance and regulation landscape is complex and not applicable to every situation. Thus, the
corresponding compliance documents are available in a high number and in many versions, where different
measures and trainings are applicable only for specific types of employees. Thus, the employees are challenged
with keeping the overview when only working occasionally in the cleanroom.

DAI-DSS Solution Suggestion

The aim is to develop an Al service that can support employees in ensuring compliance measures when entering
a clean room. The idea is to reduce human error by preventing overlooking or forgetting changes in compliance
and ensuring that the latest compliance regulations are followed. For this, the idea is to use Al to compare multiple
versions of documents and summarize relevant updates on the compliance guidelines to the employee before
entering to help avoid misbehavior. This scenario is targeted by the Al service Support Compliance for Clean Room
using RAG and LLM.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 16 of 108

3 BUILDING BLOCKS AND THEIR INTEGRATION

In this section, the DAI-DSS Architecture, its building blocks, and the different instantiations of the use-case-specific
prototypes, including different Al services, Data, or Uls are detailed. In “D2.1 — Specification of FAIRWork Use
Case and DAI-DSS Prototype Report’, an outline of the initial architecture of the project (see Figure 1) is given
based on the overall project objectives and requirements. Key components of the FAIRWork service framework are
illustrated, and described, and their relevant features are presented. A detailed description of the initial architecture
is given in “D4.1 — DAI-DSS Architecture and Initial Documentation and Test Report”, including the technical
implementation of the basic core services or application-specific services and their integration methodologies
discussed in “D4.2 Initial DAI-DSS prototype”. In this document, D4.3, a brief description of building block
components and the communication between these components will be presented.

DAI-DSS User Interface | |~ -

| _ | DAI-DSS Al-Enrichment
"DAI-DSS - DAI‘-DSSOrchestration ' .

Configurator

DAI-DSS Knowledge
base

Figure 1: Overview of DAI-DSS High-Level Architecture

The DAI-DSS consists of the following key components:

1. User Interface: Provides clear, device-flexible displays for decision-makers, highlighting KPIs and
enabling interaction in supportive environments like production monitoring.

2. Al Enrichment: Utilizes Al models and advanced algorithms tailored to individual agents, supporting
decentralized and fair decision-making.

3. Configurator: Links various model environments (e.g., business processes, dashboards) to the
Orchestrator and Ul, consolidating data for integrated decision models.

4. Orchestrator: Coordinates services and workflows, ensuring seamless delivery of decision-making
options.

5. Knowledge Base: Centralizes and organizes data from diverse sources, enabling Al learning, process
optimization, and decision tracking for continuous improvement.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 17 of 108

The DAI-DSS Framework data flow shown in Figure 2 begins with the Configurator, which aligns Uls and Al services
with data from the Knowledge Base, forming workflows sent to the Orchestrator. Users interact through the interface
to invoke required workflows, triggering Al or Multi-Agent services for decision support. If required, these services
access additional data from the Knowledge Base via REST APIs, generate suggestions, and present results back
to users with visualizations. The system ensures standardized interactions through REST APIs, while external data,
like from Intelligent Sensor Boxes, flows into the Knowledge Base to enrich decision-making.

. Configurator | | User Interfaces |
Request Response
queﬁtfor Serwics:_"i FU Zuiteun i ‘
Orchestrator | i [Multi-Agent
] Systems
D SE‘NiOEIESpGnSE B S
Data Request Data Response
Data Response
Knowledge
Base
~ Data Request
Knowledge Base 4
Appll::il{(;l:yevenl Factory Data Service Intelligent Sensor Box Asiztellrl?:ll(gt:::ce
A
Bio Sensors Environments Sensors

Figure 2: Data Flow in DAI-DSS Framework

3.1 Integrating User Interfaces

This section provides a detailed overview of the different Uls developed in the project for exposing the different
DSS functionalities to the various participants in the decision process. Each interface is a single component of a
micro-frontend framework that can be combined with other Ul components to create web applications specific to
the needed use case scenarios. Demonstration data was created based on our use case partner's decision models
and example data.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 18 of 108

3.1.1 Order Overview Ul Component

This Ul component (Figure 3) is used for the scenario “Assist Decisions about Fair Worker Allocation” and shows
the order details for each line. Clicking the “Retrieve Line Info” button, the line information is retrieved from the
Knowledge Base through the orchestrator that requests the different data and combines them. Each order consists
of a geometry that is produced in a specific production line and is assigned with a priority, the number of days until
the due date and the number of workers required to handle the geometry.

Retrieve Line Info ‘ Reset ‘

Line | Geometry | Priority | Due Date | Required Workers

17 1343314080 True 3 6
18 6700083110 False 1 6
20 531359170 False 1 4

Figure 3: Order Overview Ul Component

Since the previous report in D4.2 this component changed only the backend data alignment with the updated
Knowledge Base, keeping the Ul the same.

3.1.2 Worker Overview Ul Component

This Ul component (Figure 4) is used for the scenario “Assist Decisions about Fair Worker Allocation” and gives an
overview of all workers relevant to the production unit and allows the manager to manually go through a list of
workers and make proposals on how to allocate them to production lines. During the Ul loading, the workers' info
is retrieved from the Knowledge Base through multiple queries combined by the Orchestrator. After the data is
loaded, the workers can be selected and the details about medical conditions for each line, line preferences,
experience and resilience are visualized and enriched with color codes. After selecting a production line that fit the
medical condition of the selected worker, the “Assign” button enables for the assignment of the worker to the line.
A counter at the bottom of the card indicates how many workers are needed on the line and the number of assigned
ones. Color codes are used to highlight if the worker preference has been respected and the total number of
allocations for each line are respected.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 19 of 108

Manual Allocation Service
E t a Worker and a line 1c riorm assignment:
100023 ~

Medical Co

Preference: Lin

17/Line 18/Line 20

0/Line 18: 0/Line 20: 0

UTE Experience: true
Resilience: 0
Line 20 ¥
Assign Reset Save Assignments
Line 17 Line 18 Line 20
1D: 100001 b4 ID: 100012 ® 1D: 100020 ®
UTE Experience: true UTE Experience: true UTE Experience: true
Resilience: 0 Resilience: 0 Resilience: 0
Preference: 0 Preference: 0 Preference: 0
ID: 100005 *® ID: 100014 ® 1D: 100021 ®
UTE Experience: true UTE Experience: true UTE Experience: true
Resilience: 0 Resilience: 0 Resilience: 0
Preference: 0 Preference: 0 Preference: 0
1D: 100009 b4 ID: 100015 b4 1D: 100022 ®
UTE Experience: true UTE Experience: true UTE Experience: true
Resilience: 0 Resilience: 0 Resilience: 0
Preference: 0 Preference: 0 Preference: 0
ID: 100010 * 1D: 100023 b4
UTE Experience: true UTE Experience: true
Resilience: 0 Resilience: 0
Preference: 0 Preference: 0
ID: 100011 b4
UTE Experience: true
Resilience: 0

Preference: 0
1D: 100013 X
UTE Experience: true

Resilience: 0
Preference: 0

Allocations: 6/6 Allocations: 3/6 Allocations: 474

Figure 4: Worker Overview and Manual Assignment Ul Component

Since the previous report in D4.2, in addition to the improvement of the user experience, a “Save Assignment’
button has been added that allows storing the result of the manual assignment to the Knowledge Base in the form
of CSV file.

3.1.3 Allocation Proposal through Al Resource Allocation Service Ul Component

This component is used for the scenario “Assist Decisions about Fair Worker Allocation” and allows the execution
of a specific Al-based allocation service and visualizes the resulting assignment for each line, allowing to save the
results in the Knowledge Base after their review. The currently supported services are the Multi-Agent Allocation
Service (Figure 5), the LinSumSolver Allocation Service (Figure 6), and Rules-based Allocation Service (Figure 7).
The Al allocation can be triggered using the “Trigger Al Service” button that contacts the orchestrator to execute
the Al service and return the results. The different production lines are shown with the assigned workers and for
each, the relevant characteristics are listed to give the decision-maker more insights.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 20 of 108

Multi-Agent Allocation Service
This service perform resource allocation in a multi-agent approach. Designed to support a decision process of workload balance, this service

ensures a human centric balancing of tasks in a production environment.

Trigger Al Service Save Assignments

Line 17 Line 18 Line 20
1D: 100092 ID: 100098 ID: 100093
UTE Experience: False UTE Experience: False UTE Experience: False
Resilience: 0.32 Resilience: 0.91 Resilience: 0.86
Preference: 13 Preference: 0.8 Preference: 0.7
1D: 100064 ID: 100054 ID: 100029
UTE Experience: False UTE Experience: False UTE Experience: False
Resilience: 0.87 Resilience: 0.8 Resilience: 0.8
Preference: 0.8 Preference: 0.9 Preference: 0.8
ID: 100077 ID: 100051 ID: 100106
UTE Experience: False UTE Experience: False UTE Experience: False
Resilience: 0.82 Resilience: 0.77 Resilience: 0.8
Preference: 0.77 Preference: 0.9 Preference: 0.78
ID: 100100 ID: 100053 ID: 100081
UTE Experience: False UTE Experience: False UTE Experience: False
Resilience: 0.87 Resilience: 0.75 Resilience: 0.76
Preference: Preference: 0.9 Preference: 0.77
ID: 100075 ID: 100037
UTE Experience: False UTE Experience: False
Resilience: 0.8 Resilience: 0.8
Preference: 0.77 Preference: 0.7
ID: 100010 ID: 100035
UTE Experience: True UTE Experience: False

Resilience: 0.92
Preference:

Resilience: 0.8
Preference; 0.7

Allocations: 6/6 Allocations: 6/6 Allocations: 4/4

Figure 5: Multi-Agent Allocation Service

LinSumSolver Allocation Service
This service allocates workers based on their preferences, their resilience, and the tasks. The service return an optimal solution with respect to a

specific cost function that define what a 'good" allocation is.

Trigger Al Service Save Assignments

Figure 6: LinSumSolver Allocation Service

Copyright © 2025 BOC and other members of the FAIRWork Consortium

www.fairwork-project.eu Page 21 of 108

Rule-based Allocation Service
This service focuses on a knowledge-based approach, allowing experienced users to encode their knowledge and make it executable. The
definition of the decision knowledge is supported through conceptual modelling-based approach, which can be used as input for configuring a

decision service allowing it to be integrated into more complex decision processes.

Trigger Al Service Save Assignments

Figure 7: Rule-based Allocation Service

Since the previous report in D4.2, in addition to minor improvements in the Ul, a “Save Assignment” button has
been added that allows storing the Al service results in the Knowledge Base in the form of CSV file.

3.1.4 Production Planning Service Ul Component

This Ul component is used for the scenarios “Assist Decisions about Fair Worker Allocation” and “Assist Decisions
about Production Planning” and allows visualizing the results of the Production Planning Service that performs
workers' assignments across several orders for each production line. The service in this case requires as input a
specifically crafted Excel file, containing the production plan. A prefilled template can be downloaded as a sample
directly from the UI. As soon as the file is uploaded through the “Choose File” button, the service can be triggered
via the “Trigger Al Service”. Also in this case the results can be saved in the knowledge base after review using the
“‘Save Assignments” button. When the Al service results are returned by the orchestrator the orders in the different
production lines are visualized in a timeline chart and for each order, a detail section shows the geometry involved
and the workers assigned (Figure 8).

Production Planning Service

This service provides a full production plan based on a constraint-programming algorithm. This includes the allocation of orders/tasks to machines
as well as the allocation of workers to the machines. The service needs the order list and takes the shift plan as well as worker preferences,
resilience etc. into account.

Upload your schedule in Excel format. Sample here

Choose File schedulexlsx

Trigger Al Service Save Assignments

Experience: 0.9, Preference: 0.5, Resilience: 0.9, Transparency: medium

Rl Order 0 Workers: 100023, 100066 Oder 1 -Workers: 100002, 100121, 100133 TR
Line 20: 12:20 - 14:20
12:20 30 40 50 13:00 10 30 | pistienian 14:00 10 20

Orders Details

» Order 0

¥ Order 1

Line: Line 20
Geometry: 1340746080/8080
Workers:

* 100002

e 100121

* 100133

Figure 8: Production Planning Service

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 22 of 108

This Ul component was not available in the previous report on D4.2.

3.1.5 Truck Loading Ul Component

This Ul component is an example for the scenario “Delay of materials” to “Assist Decisions for Truck Loading” and
is used to display the arrangement of containers inside trucks, as proposed by the load optimization service. Each
shipment involves the sending of around one hundred containers, to be allocated in a certain number of trucks of
a particular type (called Mega, Mega high, Tractor, which have a different capacity).

In the 2D version, of the Ul component, the containers loaded onto every truck are displayed from above.

3
- n Stop
Fie | [[D asers\Dodcsac\Deskiop FARWo\Delay of Materaie\ Tuckshenzt |]| |10, Loop [msec) ok e AR A
&)
: @ 1250 @ 253 @ 765 @ M5 @ 5203 @ w6 @ 1zER
F @ 12350 @ 1235 @ 7R @ M @ sz @ =8 @ 1zEE
@ 12503 @ 1251 O Mene (31 O Nere (3 @ 1250
= @ mmp @ s
@ 7 @ nsE
@ 1253 @ eme3gy © e : :z:g: [RET]
@ 250 Q@ e © wmE = @ 1z
@ 1= @ s @ nss Qs @ 1=
@ TaEs @ M6

Figure 9: 2D Verison of Truck Loading Ul Component

In the Figure 9, the first row of containers is composed by 2 stacks of containers (type 1235, represented in red).
In this case, each stack contains 3 containers. The number in brackets, next to the container type, indicates the
maximum stackability of the containers, in the example cited above it is 3. In the case of the stack of containers of
type 8589 (represented in turquoise), the maximum stackability is 3, but only 2 are foreseen. To highlight the lack
of a container, therefore a non-optimal situation, the writing "None (3)" is shown in red.

The same truck can also be viewed in the 3D version of the Ul component. The image below (Figure 10) is the
equivalent of the 2D version seen from the lower right corner.

File | [% Di\users\C6desilciDesktop\ FAIRWark\Delay of Materials\TrucksNewzoe: | (6| |[21 || Loop [msec]

Figure 10: 3D Version of Truck Loading Ul Component

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 23 of 108

In this case, the type of containers is written in the legend based on the color of the blocks. The lack of containers
can be visualized with gray blocks bordered in red.

In the current release of the Ul component, which is not the final one, the list of containers to be displayed on each
truck (in which position) is loaded from a text file containing the information. Once the file is loaded, it's necessary
to press the "Truck #" button to select the truck to display. You can also change the type of truck by selecting it
from the "Truck type" button.

In the 3D version there is an additional "Missing stack" button that allows viewing the missing containers in the
various stacks in different modes: “None" (they are not displayed), "Frame" (i.e. only the red border) or "Solid" (in
grey with a red border). The 3D viewer also allows to rotate, move and zoom the truck shown. In both cases, to exit
the Ul component it’s necessary to press the "Stop" button.

3.1.6 Machine Maintenance Ul Component

This component is used for the scenario “Improve Information Access to Support Maintenance” and is composed
of two Uls, one for the indexing of the different documents containing machine-specific procedures, and one for
querying a specific issue and showing the results.

The Ul for indexing a document allows only the upload of a document and triggering an Al that extracts relevant
chunks of information and indexes them in a vector database (Figure 11).

...

‘ airport_package_control_maintenance xlsx

SUBMIT

Indexing of 28 chunks has been successfull

Figure 11: Machine Maintenance Indexing Ul

After the indexing is performed for all the relevant documents, the query Ul can be used to ask in natural language
how to solve a specific issue in a machine. An LLM-based Al will process the request and looking at the information
stored in the vector database, will provide the best solution for the issue, referencing the original document as well
for further lookup (Figure 12).

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 24 of 108

User

Bei welcher Machine tausche ich eine FCU?

Al

Der Austausch einer Feeder-Control-Unit (FCU) wird in den Maschinen der SIPLACE
SX1/SX2 Serie sowie der SIPLACE X-Serie durchgefuhrt. Hier sind einige relevante
Informationen:

1. SIPLACE SX1/8X2:
- Die FCU kann mit der Teilenummer [03059666-xx] ausgetauscht werden.
- Weitere Details finden Sie in der Serviceanleitung SIPLACE SX1/SX2 V2.

2. SIPLACE X-Serie:
- Die FCU kann mit der Teilenummer [03059623Sxx] ausgetauscht werden.
- Weitere Details finden Sie in der Serviceanleitung SIPLACE X-Serie S.

Bitte beachten Sie die spezifischen Anleitungen und Sicherheitsvorkehrungen in den
jeweiligen Serviceanleitungen, bevor Sie mit dem Austausch beginnen.

Bei welcher Machine tausche ich eine FCU? oY

Text-To-Speech]

Figure 12: Machine Maintenance Query Ul
Additionally, the Ul provides speech-to-text and text-to-speech functionalities respectively for listening to the query
of the user and for reading the results.

This component was not available in the previous report on D4.2.

3.1.7 Document Transformation Ul Component

This component is used for the scenario Improve Reliability of “Documentation about Quality Check’and enables
the upload of a document describing a production process to an Al system that processes it finding and extracts
the different process steps and the related information like description, details, and images, and generates a
semantically enriched process model reflecting the process described in the document (Figure 13).

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 25 of 108

(=

Drag 'n' drop some files here, or click to select files ¢y

‘ Car_Manufacturing_Process.docx

SUBMIT

Follow links to see the models that has been created:
« Car Manufacturing Process

Figure 13: Document Transformation Ul

A link to the generated model is visualized to the user as soon as the process is complete. With this link, the user
is redirected to a modelling environment where the generated process model is stored.

0| Car Manufacturing Process 77

Explanation [* Save o ~ &, Export Validate Model Properties. Table
Pl P P

(i) (i) o 0 () (i)

Conceptand Design | —— | ENgineering and Proto- | __,, | Supply C,'r‘\z‘:l"‘a"zgs‘ — Manufacturing — | Testing ::;Sc'f‘“y AS —» | Diswibution and Sales

1yping

+
[@X:
i
D7
A |
/i

J

)
¥ 4 i
U,

Figure 14: Document Transformation Model Result

In Figure 14 is visible in a process generated for a Car Manufacturing Process where the different process tasks
have been identified and connected in the right sequence order and details like images are visible near each task
and in the task properties accessible by double clicking on the blue rectangle representing the task.

This component was not available in the previous report on D4.2.

3.1.8 Document Compliance Ul Component

The component is used for the scenario “Improve Information Access to Cleanroom Compliance Requirements”
and is composed of two Uls, one for the extraction and indexing of information from different documents and one
for querying the semantically enriched differences between two documents.

The Ul for indexing a document allows only the upload of a document and triggering an Al that extracts relevant
chunks of information and indexes them in a vector database (Figure 15).

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 26 of 108

Drag 'n' drop some files here, or click to select files &y

i
SUBMIT

Figure 15: Document Compliance Indexing Ul

Additionally, the indexing process for this component will generate knowledge graphs from the different chunks and
combine them in form of a connected model, that is then used to query the relations between the different parts of
the document (Figure 16).

Chunk ~———————=> Extract Graphs —————> Combine to one Graph ————=> Merge Similar Nodes

i_T__ 5 OO : Aj
== | ¢ S .
=1 |

——/ | ©

i

SREORHO S OMIIC)
>
90 [0 o |0

Figure 16: Document Compliance Information Extraction Process

After the indexing process is completed for multiple version of the same document, the query Ul can be used to
call an LLM based Al that retrieve and explain the differences between two version of a document (Figure 17)

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 27 of 108

Summary of differences between Measurement_-Analysis-and-Improvement-Version-D and
Measurement_-Analysis-and-Improvement-Version-E:

The documents exhibit several substantive differences, particularly in the chapters discussing
responsibilities, continuous improvement, and the management system. The second
document clarifies specific responsibilities and deadlines for quality reporting that are not as
explicitly outlined in the first document. Additionally, there is a shift in focus regarding
continuous improvement strategies, with the second document highlighting cost control and
waste reduction instead of primarily emphasizing customer dissatisfaction. Notably, the final
chapter on record retention in the second document provides more detailed guidelines
compared to the general compliance focus of the first. Furthermore, the second document is
missing the content for chapter 11, which could indicate a revision or update in the structure.

Figure 17: Document Compliance Query Ul

This component was not available in the previous report on D4.2.

3.1.9 Calibration Document Validation Ul Component

The following screenshot (Figure 18) illustrates an example of the user interface that shows the results of the
Calibration Document Validation service.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 28 of 108

2 N

URSO01:
URSO02:
URSO03:
URS04:
URSO05:
URS06:
URSOT:
URSO08:
URS09:
URS10:
URS11:
URS12:
URS13:

G

£ Favoriten importieren 7 Favoritenleiste @ Bing

im] @ Overview over All Flagged Certific X +

Q. FLEXv08/results/results.html

URS Explanation/Expectations

Certificate Issue Date
Device Name

Device Manufacturer
Device Model

Device Serial Number
Device 1D

Calibration Date
Calibration Due Date
Standards Due Date
No. of Pages

Overall Results
Measurement Results
Executor Signature

URS14: Approvar Signature

Overview of All Flagged Certificates

0635_2024_RO_E.pdf

Pag
[URS12] Failed.

One or more of the test cases failed.
[URS12] Failed.

One or more of the test cases failed.

Failed URSs:
URS12: Measurement Results
URS12: Measurement Results

File Overview:

Page 1
All tests were passed.

Page 2
All tests were passed.

el

Page 4
All tests were passed.

0636_2024_RO_E.pdf

»

This is done via a web interface with information related to the validation check of URS01-URS14. The top section,
entitled "URS Explanation/Expectations", lists the various certificate issues and their corresponding codes, from
URS01 (Certificate Issue Date) to URS14 (Approver Signature). This section is key to understanding the flagged
issues in the certificates listed below. The bottom section, 'Overview of all flagged certificates', provides details of
specific certificates identified as '0635_2024_RQ_E.pdf'. For this certificate, it lists the failed URS codes and
provides a file overview showing which pages passed or failed the tests. In particular, the first certificate shows

Figure 18: Calibration Validation Ul Output

failures related to measurement results (URS12) on pages 3 and 4.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu

Page 29 of 108

3.1.10 Outlook

No additional improvements are foreseen for the different Uls except data alignments in case of changes to the
Orchestrator or Knowledge Base backends.

3.2 Orchestration of Microservices

This section describes the implementation of the DAI-DSS Orchestrator that manages how the microservices within
the project architecture interact and function cohesively. It is designed to control the workflow and data exchange
between the microservices and the interconnected building blocks.

3.21 Workflow-based Orchestration

Workflow-based orchestration was used to orchestrate the different microservices running some of the Al
prototypes described in e.g. the Ul section 3.1.3. As an engine, the Orchestrator relies on “Netflix Conductor™, and
its configuration environment can be accessed via the Configurator of our architecture (see section 3.3.2). Within
the Conductor setup environment, users have the option to navigate between sections by utilizing the top navigation
bar. In addition to other capabilities, the platform enables the definition and execution of workflows. While the
"Definitions" tab provides an overview of the currently specified workflows and allows for editing or adding new
ones, the "Workbench" tab enables the execution of these defined processes. The workflow definition area of the
workflow engine's configuration environment is displayed in Figure 19. The names of previously defined workflows
are displayed in the window together with other details like the workflow's version, a brief description, who and
when the definition was created, etc.

@ conductor | s cemeons st wonsenn

Definitions

Workflows

+ New Workflow Definition

12 results Q m

name

T

Figure 19: Workflow Engine Control Page

To tackle the different use case scenarios, retrieving data needed by the Al services or the decision maker from
the Knowledge Base is often necessary. Depending on how the needed information is stored, different AP calls or
combinations of them are necessary to retrieve it. For each AP, a service is registered in the microservice controller.
The instance of the microservice controller used in the FAIRWork project can be reached via the “Microservice

1 Conductor. (2023). Basic Concepts - Conductor Documentation. https://conductor.netflix.com/devguide/concepts/index.html

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 30 of 108

Controller Tile” in the Configurator (see section 3.3.3). Registered microservices can be accessed from the Ul of
the microservice controller. For example, the microservice “FAIRWork Knowledge Base Public” contains several
microservice operations for accessing the knowledge base, fetching the required data, and performing necessary
output transformations. An example of a test call of one of the created services can be seen in Figure 20. In the
microservice controller dashboard, the user can select the name of the microservice and its operation. By clicking
on the highlighted button named “Test a Call”, the selected microservice operation can be tried out. In the opening
window, the user can specify the required input parameters of the service and send a request by clicking on the
button below. The response is then shown on the right side of the window. For more information on the APIs of the
knowledge base and how they can be used for retrieving data, see section 3.4 of this document. The so-created
microservices have been further used and combined within workflows, which results in different workflow definitions.

Microservice Controller

Dashboard

Microservice Management ~

Microservice ID: rov a Micr or FAIRWork KnowledgeBase Public v Delete Edit Create New Upload Download

Operation Name: getAggrProp ~v @ Stat Stop | TestaCall
——

Call Microservios with |0 083670858014 Tde-88bb-c0617 Tod2dbf Operation: getAgarProp

Input parameters

" Service output

Figure 20: Test Call of a Microservice Operation for retrieving Data from the Knowledge Base in the Microservice
Controller

Workflows can be defined, visualized, and modified in the corresponding section of the workflow configuration
platform. The main components of a workflow are tasks and operators2. A task is used to perform an activity, usually
interacting with external systems or services. An example would be an HTTP task, which can be used to fetch data
from an endpoint or make calls to other services. Operators, on the other hand, are utilized to handle branching
and decision-making within the workflow. They aid in controlling the flow based on the conditions or outcomes of
prior tasks.

An example of a workflow definition overview can be found in Figure 21. In the picture, you can see the workflow
definition of “dataset_crf_workloadbalance_kb”, which retrieves the required values of workers and the production
line they may be allocated to. In this workflow, you can see multiple HTTP tasks, which call the created services
for retrieving properties from the knowledge base. The input parameters in each task specify what information is
needed from the Knowledge Base. Some input parameters depend on the output of other tasks. This can be
specified by using placeholders referencing the name of the required task output. In the workflow example, the

2 Conductor. (2023). Tasks — Conductor Documentation. https://conductor.netflix.com/devguide/concepts/tasks.html

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 31 of 108

different tasks for retrieving the necessary information are called in parallel. This is done by using operators to steer
the workflow. In this example, you can see a “Fork_Join” operation, which allows a specified list of tasks to be run
in parallel. In this case, we have five HTTP task sequences running in parallel. They are followed by a “Join”
operation that waits for the forked tasks to finish and collects their outputs.

@ Conductor st oemies Takcwees wsisens

http,_task availability ttp_task, n tp_task, UTE_sxperience 3 tp tsk required worker
tp_ta (tip_task) L (http._tas

— (=) Visual representation

" Workflow definition |
3 _containing a collection of
8 task configurations

Figure 21: Example of a Workflow Definition for retrieving Information from the Knowledge Base

3.21.2 Testing workflows

While designing a workflow, it is helpful to repetitively test the workflow one is working on. This can be done by
accessing the “Workbench” section over the navigation bar. After saving your valid workflow, it can be executed by
choosing its name and version in the corresponding fields. If the workflow requires input parameters, they need to
be added in the corresponding field in JSON format. By clicking on the play button on the top, the workflow gets
executed. The user can click on the workflow ID on the right side to inspect the running workflow in more detail
(see Figure 22).

@ Conductor Eecutons Definitions Task Queues Workbench N av |g a t| on ba I

Run History B Workflow Werkbench > S Created: 2023-12-06 10:11:54 Execution History

datasetcrf workeadbalance b % ‘Workflow Name

P Select workflow name here - | == Workflow ID

"Workflow version

" Select workflow version here -

Enter input parameters here

Torvelation 1B

Task to Bomain (SON)

Figure 22: Workflow Workbench

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 32 of 108

When clicking on the workflow ID, an overview of the workflow execution is shown in a new window. By navigating
through the tabs, different aspects of the workflow execution can be inspected, like the individual tasks, a summary
of the workflow execution, or the input and output of the workflow. In the task diagram, the user can see the
execution path, where completed tasks are shown in green (see Figure 23).

@ Conductor

dataset_crf_workloadbalance_kb 55 RSV (s m

7b281f92-06f6-409b-ad76-4af0cdd73981

start

hitp_task availabil hitp_task medical condition | | hitp task UTE ¢
(htig_task) (http_task) (htip_task)

Figure 23: Workflow Execution Details

Workflows can be further used in other components of the system, like the Uls or other services and workflows.
This can be done using the APIs provided by the Configuration environment. With the help of these APIs, the user
can perform different interactions with the workflow engine, like searching, storing, or triggering workflows. The
required action needs to be specified in the body of the API call. In Figure 24, you can see an example of an API
call triggering a workflow using Postman. In the picture, you can see that when triggering a workflow, aside from
the action, other parameters can be specified in the body of the API call. These properties can include the workflow
name, the workflow version, required input parameters, and a filter option. The filter option allows to transform the
workflow output using JSONata3 expressions.

3 JSONata.org. (2021). JSONata Documentation. http://docs.jsonata.org/

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 33 of 108

Homa Werkspaces ~ AFINetwork « Explore Q sesrch posems ED o @ v - o x

2 My Workspace New Import A Overviow Ho ks B
=] = - Trigger Syne ElEm |)
Params t o Tests Settings Cookies &
N I
:
: ody 0 ca !
B sa

Response

Figure 24: Example of an API Call for triggering a Workflow in Postman

3.2.1.4 Simplify the Definition of Linear Workflows

Most of the workflow definitions used for the Al services, e.g presented in the section 3.5.9, do not use complex
logic but follow a linear flow. For such services using the Conductor workflow definition format is overwhelming and
more error-prone for the development experience. This is the reason that a wrapper around the Conductor engine
has been deployed enabling the definition of linear workflow in a more simple and powerful format for both the
understandability of the service logic and the expressiveness of task activities (Figure 25).

“flow": {

"tasks": [
> d » | transform-text-prompt | ———» process—;:::‘-tomodel- {"r'ef": "start",

"endpoint”: "doc-extractor”

Upload 4

Document t, L EgE
ref": 5

l "endpoint”: "transform-text-prompt"

"ref": "textjson",
"endpoint”: "process-text-to-model-json",

output-to-prompt — layout-model-prompt —— | insert-image-to-model "parameters”: {
"context": "${promptInput}"”

{
"ref": "t2",
l "endpoint": "output-to-prompt”
}

"ref": "layout",
o = - "endpoint": "layout-model-prompt"
model-json-to-doc-list ‘H te-model-ad > 1,

"ref": "insertImage",
"endpoint": "insert-image-to-model”,
"parameters": {

"images": "${start.urls}”

Model Created

Figure 25: Simplified Workflow Definition

The Configuration environment for such linear workflow can be accessed as well via the configurator described in
section 3.3.2.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 34 of 108

Currently, 8 workflows have been created to demonstrate a possible usage in a resource allocation scenario and
to support the Al prototypes. The workflow engine can be accessed by clicking on the brown tile called “Workflow
Engine” in the Configuration environment (see section 3.3.3). The user will be forwarded to the Ul of an instance of
the workflow engine “Conductor”. By clicking on the “Definition” section in the navigation bar, a list with currently
available workflow definitions is displayed. The workflows relevant to this demonstration have the following
characteristics (see Table 2) and can be examined in more detail by clicking on them:

Workflow name Input parameters

dataset_crf_workloadbalance_kb node_geometry_mc — indicates the ID of the breakpoint element

in the knowledge base describing the medical condition for a certain
geometry.

linenumber - indicates the ID of the line where the order will be
produced.

node_geometry_rw — indicates the ID of the breakpoint element
in the knowledge base describing the characteristics of a certain

geometry.
dataset_crf_orders none
crf_workloadbalance_dmn_OMILAB none

ai_document_transofrmation document - the document to analyse in Base64

ai_machine_maintenance_index document - the document to index in Base64

ai_machine_maintenance_query query — the query to perform on the indexed document

ai_document_compliance_index document - the document to index in Base64

ai_document_compliance_quer . .)
- —comp —query document_version_1 - the name and version of the first

document to compare

document_version_2 - the name and version of the second

document to compare

Table 2: Orchestration Workflows

The input parameters need to be provided in JSON format. An example of input parameters that can be used in
the workflow “dataset_crf_workloadbalance_kb” would be the following:

{
"node_geometry mc": "515396245145",
"linenumber": "18",
"node_geometry rw": "515396162776"
}

Considering the first workflow mentioned in the table as a sample, it retrieves necessary values from the Knowledge
Base needed by the decision-maker by calling different APIs. In this case, five of the HTTP tasks are called in

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 35 of 108

parallel, as only one task is dependent on its predecessor. The data retrieved is needed to support a resource
allocation decision challenge. It includes information about the workers, like their availability, if they fulfil the required
medical condition to work with a certain geometry, their experience with a certain production unit, their preferences,
etc., as well as information regarding the line on which a certain geometry is produced. In general, the output of
this workflow contains all the required information to describe one order of a certain geometry. The completed task
diagram can be seen in Figure 26.

fork_join (my_fork_join_ref)

http_task_lineinfo
(http_task)

-

http_task_availability http_task_medical_condition http_task_UTE_experience http_task_workerinfo http_task_required_worker
(http_task) (http_task) (http_task) (http_task) (http_task)

] J L
http_join {http_join_ref)
e

e)
| final |
S

Figure 26: Execution Path of Workflow "dataset_crf_workloadbalance_kb".

3.2.2 Multi-Agent Orchestration

When combined with microservices architectures, Multi-Agent Systems play an important role in creating
decentralized and adaptable systems. This combination provides independent scalability for different system
components, allowing tasks to be distributed among specific agents. The decomposition into microservices makes
it easier to update and modify parts of the system without affecting the rest, enabling the dynamic introduction of
new agents or services. Each microservice contributes to the system's resilience, ensuring that failures in one agent
or microservice do not bring down the entire system. This also allows for the distribution of responsibilities and
efficient adaptation to new requirements or scenarios. However, this integration may pose challenges, such as the
complexity of managing various microservices, requiring a strategy for communication and coordination among
them.

The main reasons for implementing multi-agents with a microservice architecture are explicitly presented below:

« Scalability: microservices enable independent scalability of diverse system components. By integrating agents
into microservices, it is possible to achieve a decentralized control of services that can support decision-making.

* Flexibility and decoupling: decomposition into microservices makes it easier to update, modify, or replace parts of
the system without affecting the whole structure. When combined with an agent-based approach, it enables
dynamic system adaptation as new agents are introduced, or existing ones are modified.

* Resilience: if an agent or microservice fails, it does not necessarily bring down the entire system due to the
decentralized nature of microservices.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 36 of 108

The orchestrator developed provided access to the results of the microservices to Assist Decisions about
Production Planning. This is a secured element developed in Python through the Flask framework and provides
two endpoints to its users, as shown in Figure 27. This element also has administrative endpoints that are only
accessible to the administrator and uses JWT — JSON Web Tokens - to protect data access. The login endpoint is
used to acquire the necessary JWT token to read the data through the microservices-results endpoint.

/more/orchestrator/vl/login User Login N

ET /more/orchestrator/vl/microservices-results Getmicroservices results v

Figure 27: Available Endpoints to Registered Users

The Waitress Web Server Gateway Interface (WSGI) is used in production, serving the orchestrator web app in
port 5051. The web app connects to the outside world through the machine’s Apache proxy server, using port 443
to do so. This server is used in both ways of communication, adding an extra layer of security to the system.

Deployment-wise, docker services were used to encapsulate the necessary elements to have the orchestrator
running securely, allowing the integration of this element with the microservices developed within the FAIRWork
platform. Thus, a docker image for the orchestrator was created, and hosted in Docker Hub and a docker service
running a database was also deployed to manage the orchestrator user credentials information. The
containerization enables the web app effortless deployment, ensuring the smooth, uninterrupted execution of the
orchestrator on the server, even amid concurrent services also running on the same machine. The orchestrator
runs on the server using SSL certification through the Apache server to encrypt/protect the communications.

This integration between the MAS Orchestrator and microservices enhances decision-making capabilities. They
bring autonomous decision-making to individual components, enabling efficient resource management. When
combined with the loosely coupled nature of microservices, these agents can interact and collaborate. Furthermore,
the architecture ensures functional integration with the Knowledge Base and Uls for accessing and storing data
useful to the microservices and displaying the output and receiving input from the decision-maker.

In FAIRWork, taking advantage of the scalability provided by the approach used to develop the orchestrator, the
endpoint that provides the Uls with the microservices results was updated to also work with the POST verb, as
shown in Figure 28. This allows the reception, by the orchestrator, of an excel file containing an order list used to
create the input of the production planning microservice.

/more/orchestrator/vl/login User Login ~

/more/orchestrator/vl/microservices-results Get Production Planning microsenice result N

/more/orchestrator/vl/microservices-results Get microsenices results: DMN, LAO and MAS N

Figure 28: Orchestrator Endpoints

The login endpoint has to be used first to acquire the JWT (JSON Web Token) that will allow the usage of the
microservices-result endpoint, regardless of the used REST verb on this endpoint.

The login endpoint requires the username and password to be sent in the body of the request. This process is
depicted in Figure 29.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 37 of 108

POST ” ./moreforchestrator/v1/login

Params Authorization Headers (8) Body e Pre-request Script Tests Settings
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON -~
1 1
2 "username”: "a_username”,
3 "password”: "its_passwoxrd"
1}

Figure 29: Login Endpoint Usage

The endpoint returns a 401 HTTP response status code if an unsuccessful login attempt is executed. In case of
success, the server returns a 200 HTTP status code, and the JWT access token and its validity in the response’s
body, as presented in Figure 30. Token validity is set for 30 minutes.

Body Cookies Headers (4) Test Results @ Status: 200 OK Time: 295ms Size: 442B [3] Save as example
Pretty Raw Preview Visualize JSON = [(w] Q
1
2 “"access_token": "eyJhbGci01JIUzIINiIsInRScCI6IkpXVCI9.

eyImemVzaCI6ZmFsc2UsImlhdCI6MTcwMjMAMDEYNCwianRpIjoiMDASMGZINMItMGULIMyOOY2IKLTgxMDUtNZBKN] LhOTEXODEIIiwidHIwZS
I6ImFiY2VzeyIsInNLIY1iT6ImlvemVEYWRtaWdil CIuYmYi0jE3MDIz0DAXMIQsImVAcCIEMTcwMiMAMTkyNHE .
cHGNGU1g0x80v_7g2M13nh258QubCBcCSpTC2RHAMWXY" ,

3 "validity": 18008

4 B

Figure 30: Successful Login Response

To maintain data integrity, input and output models were defined for this endpoint to force the data to conform to
these models. The models are presented in Figure 31.

UserLoginModel v { LoginOutputModel v {
usernamex string access_tokenstring
Username example:
i Sring validic E:.:hbz?OUIUleNu'sl
Password y *
example: 1860
} }

Figure 31: Login Endpoint Data Models

3.2.2.2 Microservices Results Endpoint

This endpoint is secured and requires a valid JWT access token, retrieved from the login endpoint, to be passed in
the Authorization header as a Bearer token. If a malformed/invalid/expired token is used, the endpoint response
uses a 401 HTTP response status code and a specific message in the response’s body to signal this to the user
making the request. If a valid token is used, the endpoint returns the microservices allocation results in a JSON
according to the agreed-upon format to convey this information. Figure 32 shows the configuration of the REST
request to use this endpoint properly.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 38 of 108

GET v Ivl/microservices-results?microservicel=trueµservice2=falseµservice3=true

Params e Authorization Headers (7) Body re-request Script Tests Settings
Headers 6 hidden
Key Value
Authorization Bearer eyJhbGciOiJIUzINiIsINRScCIBIkpXVCJ9.eyJmc...

Figure 32: Microservices Allocation Results Endpoint Usage

Description

When using the GET REST verb, the endpoint accepts parameters to define which microservices should be inquired

to get their results. This is presented generically in Figure 33.

Params o Authorization Headers (7) Body Pre-request Script

Query Params

Key Value
microservicel true
microservice2 false
microservice3 true

Figure 33: Generic Parameters Structure to be used in the GET Request

In this case, three models were devised:

o WorkerModel: to specify worker properties;
o AllocationModel: to specify worker allocation to a specific line;
o OutputModel: to specify worker allocation to all lines.

The Output Model includes the other two. Thus, it is presented in Figure 34 to depict all models and their integration

as described above.

OutputModel v {

AllocationList ~ [AllocationModel ~ {

LineId string
example: 17
WorkersReguired integer
example: &
v [WorkerModel +~ {
Id

Workers

Availability
MedicalCondition
UTEExperience
WorkerResilience

WorkerPreference

H
H

Figure 34: Output Model

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu

string

example:

string

example:

string

example:

string

example:

number

example:

number

example:

leelez

True

True

False

e.4

e.7

Page 39 of 108

For this endpoint, when using the POST REST request, to query the production planning microservice, two models
were used, namely:

o Allocation: to specify workers to a given task;
e Planning: to provide multiple task allocations.

Figure 35, depicts these models, since Planning uses the allocation model to structure the data.

Planning + {
experience number
example: @.85
Experience value

preference number
example: 8.9

Preference value

resilience number
example: 8.7

Resilience value

transparency string
example : medium

Transparency level

allocations
v [

List of allocations

Allocation ~ {

Task string
Task ID
Start integer

Start timestamp
Finish integer

Finish timestamp

Resource string
Resource name

geometry string
Geometry ID

required_workers integer

Number of required workers

workers
v [

List of worker IDs allocated to the Task

string]
H

Figure 35: Production Planning Microservice Data Model

This approach allows the orchestrator to easily scale by accommodating new microservices while ensuring their
availability. When a new microservice is created, it only needs to grant access to its results. The orchestrator can
configure the connectivity to this microservice using a new parameter in the request sent to the data acquisition
endpoint created to identify that microservice. Consequently, this fosters system resilience since the system still
functions even in the event of microservice failure. Figure 36 illustrates how the Multi-Agent Orchestrator interacts
with the microservices of the CRF Workload Balance use case scenario.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 40 of 108

Microservice Microservice

Repl Invoke

Invoke

Orchestrator

Invoke

Microservice
3

Figure 36: MAS Orchestration of Microservices

3.2.3 Outlook

The Orchestrator provides the link between the Ul and the Al microservices. To do this, it collects data from the
Knowledge Base and user input and processes it in order to meet the requirements of the microservices, interacting
with this building block in order to offer the result to the user via the Ul. The Orchestrator connects the components
of the architecture developed in a cohesive and objective way, allowing for added scalability so that the system can
grow as new services are added.

3.3 Integrating Configuration
3.3.1 Multi-Agent Orchestrator Configuration
Microservices results endpoint

In the Multi-Agent Orchestrator, an example of configuration is given below:

After login, the received JWT token is used in an Authorization header to gain access to the endpoint. This is shown
in Figure 37.

POST w~ [morejorchestrator/vlimicroservices-results?start_date=2023-09-01&days_to_plan=14&availability_type=r
Params @ Authorization Headers (1) Body Scripts Settings
Headers
Key Value
Authorization Bearer {{jwt_token}}

Figure 37: Required Authorization Header

The POST REST request to this endpoint uses parameters to configure the usage of the production planning
microservice. Figure 38 shows an example of these parameters.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 41 of 108

Query Params

Key Value
start_date 2023-08-01
days_to_plan 14
availability_type

Figure 38: POST Request Parameters

The parameter start_date is mandatory, has to be in accordance with the dates present on the Excel file, and
represents the date to start the planning.

The parameter days_to_plan is optional and represents the time interval to be used in the planning algorithm. If not
used, it defaults to 14 days.

The parameter availability_type is optional and represents the worker's availability to be used in the planning
algorithm given the data provided by the end user:

e Programmed availability: p
o Real availability: r
If not used, it defaults to (p)rogrammed availability.

After input preparation, contacting the microservice endpoint, and getting its response, it replies to the Ul with the
data from the microservice using the planning data model presented in Figure 35.

3.3.2 Configuration Framework

The cloud-based modelling platform ADONIS* is used as the FAIRWork process modelling environment. Here
decision models to concretize the use case requirements and ease the identification of relevant aspects have been
modelled to define the challenges and parameters crucial to the decision-maker. ADONIS is a framework based on
the ADOxx meta-modelling platform?, that is BMPN 2.0 compliant. The modelling tool can be accessed in the
configuration environment by clicking on the tile with the name “BPMN Modelling”. Figure 39 depicts the
configuration environment and the ADONIS login page (credentials can be requested at fag@adoxx.org). How you
can navigate in the modelling tool is described in detail in FAIRWork D5.1. Additionally, the decision models can
be found in the knowledge base under FAIRWork_Project / CRF / Decision models and FAIRWork_Project / Flex /
Decision models.

4 BOC Group https://www.boc-group.com/en/adonis/ (last visited: 18-02-2025)
5 OMILAB NPO. https://www.adoxx.org/ (last visited: 18-02-2025)

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 42 of 108

mailto:faq@adoxx.org
https://www.boc-group.com/en/adonis/
https://www.adoxx.org/

.....

| @ 2ooms

Figure 39: Accessing Login Page of Modelling Tool.

3.3.2.2 Configuration of Decision Services Experiment

Within the DAI-DSS, not only should the combination of available services be configurable to achieve orchestration,
but also, the decision services themselves should be adaptable to different situations. How well a decision service
can be adapted to new situations depends on the used decision algorithm and on its design. For this DAI-DSS
prototype, an experiment was created to configure a rule-based decision service using conceptual modelling. The
service and how it can be configured to create tailored decision support is described in section 3.5.1. In this section,
we want to discuss the procedure and environment that were used to create this experiment for the configuration.

Configuration/ DAI-DSS
Design | aycerpt

Procedure
Orchestrator
uses ’,/ uses

Tool: Scene2Model Tool: Adonis/Bee-Up Tool: ADOxx/Bee-Up / ‘

Decision

! ﬂ : 2! : g sk /
! ' P | | i 1 LW
E Scene2Model ! E ADONIS ! i ! Service
' ! i - -
N O I N - e
! ' i —— i 1 +

om0 L e TR, configure/ |/ f [

O

,,,,,,,,,,,,,,,,,,,,,,,
N /
establishes |, ;

1}
- . - XX
Decision Decision .7 A -] dol,lv&
Decision Case GEHE Model - L’ * ‘ atus
Process e Py s

N

Figure 40: Overview Experiment for Decision Service Configuration

The procedure for the configuration within this experiment is based on the one that was used to identify the use
cases and decision challenges for the FAIRWork project (see FAIRWork D2.1 for details). The procedure for this
experiment and its connection to the DAI-DSS are visualized in Figure 40. The procedure starts with understanding
and defining the decision case which should be supported. This is an important step, as one must know exactly
what should be decided and what the context is if automated decision support should be established. Afterward,
the different steps and the needed information for making the decision must be defined to have a more sophisticated
understanding of what must be done to make a final decision. This can include preparing steps, or maybe the
decision itself is done through a series of sub-decisions, which must be done in a certain order. This knowledge is

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 43 of 108

presented in the decision process and is derived from the decision cases. Finally, the decision and its possible sub-
decision must be specified in a way that a decision support system can suggest a solution. This includes a way of
defining the decision logic and also to create an instance of a decision service, which can then be called by the
overall decision support system.

To understand and define the decision knowledge in this experiment, we used conceptual modelling with
corresponding modelling tools. We used modelling tools based on a common metamodelling platform; in our case,
this was the ADOxx meta-modelling platform. This should later help add new and adapt existing experiments with
the modelling methods used.

For defining understanding and defining the definition case, the Scene2Modelf tool was used, which supports
physical workshops to foster information exchange and understanding between the participants in the workshops.
Additionally, it supports the capturing of the created knowledge through digital, conceptual modelling, which is
automatically generated from the physical artifacts created in the workshop. The generated models can then be
further enriched and are available in a machine-processable way.

For modelling the decision processes and the decision models for this first experiment, we used a standardized
modelling method to start with tested and well-known modelling methods. In particular, Business Process Model
and Notation (BPMN) and Decision Model and Notation (DMN). Both of these are available in the Bee-Up” modelling
tool (which is also based on ADOxx), and therefore, this tool was used for this experiment.

To use the decision models created with DMN as input for configuring a decision service, the Bee-Up tool was
extended to fit the needs of the experiment. After these extensions, the models can be used during the configuration
of a decision service. How the models can be used as configuration input in this experiment is explained in the
service that will be introduced in the section 3.5.1.

Finally, to ease the creation of a callable decision service, a framework is needed that supports the users in offering
callable endpoints and running the needed algorithms. For this part, the microservice controller framework® was
used. For this, a connector for consuming the modelled information and instantiating a decision service was created,
which can be used together with the models created for this experiment. If the decision endpoints are tested and
found feasible, they can be used by the orchestrator to support the decision-making in concrete use cases.

3.3.3 Configuration Integration Framework

The entry page of the Configuration environment can be seen in Figure 41. Each tile on the web page gives access
to configuration wizards or platforms for defining necessary parts of the system, e.g. Uls or workflows. The tile
“Create a Web Application” enables the configuration of a Ul for a web application, while the tiles “BPMN Modelling”,
‘Access Knowledge Base”, “Microservice Controller” and “Workflow Engine” provide access respectively to the
ADONIS based BPMN modelling environment described in section 3.3.2.1, the Knowledge Base described in the

section 3.4, the microservice controller, and the workflow engine described in the section 3.2.1.

& OMILAB NPO. https://www.omilab.org/activities/scene2model/ (last visited: 18-02-2025)
7 OMILAB NPO. https://bee-up.omilab.org/activities/bee-up/ (last visited: 18-02-2025)
8 Adoxx.org. https://www.adoxx.org/live/olive (last visited: 18-02-2025)

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 44 of 108

https://www.omilab.org/activities/scene2model/
https://bee-up.omilab.org/activities/bee-up/
https://www.adoxx.org/live/olive

eulive-teamcom @ % « %02

B $- 2 a

Create a Web Application BPMN Modelling Access Knowlege Base Microservice Controller

A X) ®

Workflow Engine Manage Ul Components Automatic tile generation Add new...

Figure 41: OLIVE instance showing the Configuration Environment.

The microservice controller, accessible from the relative tile in the Configuration environment entry page, allows to
register and manage microservices to follow a configuration approach. Microservice operations can be defined
through the configuration of so-called connectors. There are different types of connectors available. Currently, we
use mostly the REST Connector for getting data from a REST service, like the APIs available for accessing the
knowledge base and the “Javascript Nashorn Engine Connector”, which executes a JavaScript using the Nashorn
Engine and returns its output. In the microservice controller dashboard, the user can choose a predefined
microservice and click on “Edit”. Now, all currently registered microservice operations and their definitions can be
inspected. Depending on the selected connector, different configuration options are available (see Figure 42). An
example of how the microservice controller was used in this project so far can also be seen in the experimental
decision support service described in section 3.5.1.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 45 of 108

Microservice Controller

Dashboard

FAIRWok Knowkogesase Fusl w Oeiete | Edt | Creato New Uplsad Cowmieat

Operation Mame: Select a Microsenvica Operation v @ Stan | Swp | Testadal

Figure 42: Example of Microservice Definition.

For now, the Configuration environment allows the management of workflow by providing access to the workflow
engine either by manually accessing it by clicking on the tile named “Workflow Engine” or by using the provided
APIs. How such a workflow definition can look is described in section 3.2.1.

Besides handling microservices and workflows, this environment enables the configuration of Uls by combining
different Ul components, and after their configuration, they can be deployed as web applications. By clicking on the
Tile “Create a Web Application,” the user is forwarded to a wizard, which assists in configuring the needed web
application. In the first step, the user can choose a layout template. Currently, only the “Table Layout” can be
selected, but additional templates can be added. After the selection, the “Next’-Button on the right can be clicked
to proceed with the second step of the configuration wizard. In the second step of the wizard, the Ul can be designed
by dragging and dropping the needed Ul components into the fields of the given layout template. The Ul
components available are all the ones described in the section 3.1. Configuration of specific properties for each Ul
component is possible in the right panel of the Ul builder after selecting each component. After the user finalizes
the placement of the components, he/she can proceed with the next step by clicking on the next button on the right
side again. In the third step, a preview of the web application is displayed. By clicking again on the next button, the
web application is automatically deployed and can be accessed via the displayed link. Figure 43 shows the different
configuration steps.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 46 of 108

Figure 43: Configuration Steps of creating a Web Application.

3.3.4 Outlook

At the configuration level, one can select microservices and configure parameters to define important input data for
the use case. This makes it possible to adjust how each microservice will be triggered according to the project's
needs. In addition, this approach offers greater flexibility and scalability, as it makes it possible to evolve and
maintain each component independently without affecting the others.

3.4 Integrating the Knowledge Base

The integration between the Knowledge Base and the Orchestrator is facilitated through a REST API, enabling
seamless data exchange and decision-making within the DAI-DSS framework. Figure 44 and Figure 45 illustrate
the UML sequence diagrams that detail the interactions between various components for achieving production
planning and worker allocation tasks in the CRF workload balance and production planning use case scenarios.

Below is an overview of the process:

1.

User Interaction with the DAI-DSS framework: The process begins when the user interacts with the DAI-
DSS User Interface. The Ul prompts the user to upload a CSV file containing production order details. This file
typically includes “Production orders”, “Geometry codes” and “Due dates”.

CSV File Processing by the Orchestrator: After the user uploads the CSV file, the Orchestrator processes
its content by, parsing the file to extract geometry codes. Using these geometry codes as query parameters to
fetch relevant data from the Knowledge Base.

Knowledge Base Queries and Information Retrieval: The Orchestrator queries the Knowledge Base via
REST API, retrieving the following essential information for each geometry code like Production throughput
specific to each geometry code (Throughput Values CNO). Similarly data on production lines associated with
the geometry code, including “Line number “, “Backup line®, “Mold” and Number of operators required to
produce a geometry on a given line. If any of the above information is missing, the geometry code is excluded

from further processing.

Enrichment with Additional Data: For geometry codes with complete information, the Orchestrator retrieves
further data from the Knowledge Base:

o Suitability Information: The Orchestrator validates data from the stevedore suitability dataset retrieved
from the Knowledge Base to ensure all required geometry codes match the production planning sheet.
Geometry codes not found in the response are excluded.

o Operator Preferences: Preferences of individual operators for handling specific geometry codes.

o Resilience Information: Each operator's resilience in relation to a geometry code.

e Geometry codes or stevedore IDs lacking any of the above data are excluded from further processing.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 47 of 108

5. Data Aggregation for Al Services: All the retrieved data including suitability, throughput, line information,
operator preferences, and resilience data is aggregated into a structured JSON format. This JSON file serves
as the input for Al Services, enabling decision-making.

6. Al Services and Decision Support: The Al Services analyze the aggregated JSON and generate
recommendations for, Worker Allocation by providing optimal assignment of workers based on skills,
preferences, and production requirements. Similarly, for the production planning scenario, the services provide
an efficient scheduling and workload distribution plan across the available production lines.

7. Result Presentation via the Ul: The Al Services send their recommendations back to the Orchestrator.

o The Orchestrator formats the results and displays them on the DAI-DSS UL.
e Users are presented with clear, actionable insights, enabling informed decision-making for production
planning and workload balancing.

This structured process ensures that the DAI-DSS framework effectively integrates data, Al analytics, and user
interaction to optimize CRF workload balance.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 48 of 108

Production Order Request Processing

User = Knowledge EDM
(D Interface i chestay (&) Base Server @ Database

Upload Production order
request

Search Query for
Geometry_cno (GET : line info,
j— disengo, cno, >,
availbale_in_stevedore_suitibal
ity, available_in_legende)

ametry Code found

if @
o)

— Fetch geometry properties —>I

€~ Return geometry properties —

€— Return geometry properties —

Geometry Code not found

«———Retun[]

€———Return[]

Parse
response data
(check
geomtery code
properties has
true for
availbale_in_st
evedore_suitib
ality,Available_i
n_legende)

Search Query for
- Geometry_info (GET : >,
Geometry code line info)

Geametry Code found

— Fetch geometry properties —>I

€ Return geometry properties —

€— Return geometry properties —

Geometry Code not found

€&———Retun[)

€————Return[]

Parse
response data
(check
geomtery code
properties has
DISENO,Line
Info, BACK UP,
OP, CNO, Mold
)

PEE—
Get stevedore_presence (GET

— :operators avalibality >,
information)

datd available in Knowledge base

if @

— Fetch stevedore_presence —)I

< Return stevedore_presence —

«— Return stevedore_presence —

data available not found

«—Retun[)

«——Retum[]

. Upload Operator presensein _|
Knowledge Base

User =) Knowledge EDM
O iertace =y Oohesator O Base Server 8 Datsbase

Figure 44: Sequence Diagram for DAI-DSS Interactions Part 1

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 49 of 108

Production Order Request Processing

P —
=
= Orchestrator

Usel
(D Inmrl;ns

Upload Production order
request

J

—— GET stevedors_suitability —>(

Database

| O [Knowledge = EDM

Base Server

4ametry Code found

o Retum stevedors_sulabilty _
aggreagate data

Fetch stevedore_suitabiity
aggreagate data

Return stevedore_suitability
3 -

o aggreagate data

Geometry Coda not found

& Rewmn()

«——Retum ()

Parse
response data
{oheok
geormtary code
and operator id

stevedore_sultl
bality data)

— GET stevedors_preferences —>.

Gegmetry Code found

Retutn stevedore_preferances __
ha aggreagats data

_ Fetch stevedore_preferences

aggreagaie data >

Return stevedore_preferances
= aggreagate data -

Geametry Code nat found

&«——FRetumn|[]

«————Rewm[)

Parse

response data.

(check operator
id and

geomtary code
exisits in
stavedora_prel
eranoes data)
P—

— GET stevedore_resilience_info a(

found
= Fetoh resilience _infa
aggreagate data >
o Petum resiience_info _
agoreagale daia
Return resilience_info
< aggreagate data =
ot found

& Retum)

€————— Rewrn []

Parse
response data
(sheck operator
cod exisits in
resilience_info
data)

—

aggreagte the
responses ino
format sultable
for Al services.

send request for Allacatio

B aisenvice

Present the allocations on the
< ul -

-

N
)] = 2 Orchestrator ‘ | o BK;:;MS';E;

Interface =

\

J

Respanse with

El
S

Figure 45: Sequence Diagram for DAI-DSS Interactions Part 2

Copyright © 2025 BOC and other members of the FAIRWork Consortium

www.fairwork-project.eu

Page 50 of 108

3.41 Reliability

Data reliability refers to the dependability and trustworthiness of data in supporting effective data lifecycle
management and decision-making. Reliable data ensures that stakeholders can confidently rely on it to make
informed decisions, as it consistently meets the standards for accuracy, usability, and consistency.

Key attributes of reliable data include:

Accuracy: The extent to which data accurately represents the real-world values or events it is meant to
reflect.

Consistency: The absence of contradictions or discrepancies within datasets, records, or across different
data versions.

Completeness: The presence of all necessary information, ensuring no critical data fields are missing.
Timeliness: The availability of data at the right time, ensuring it is current and relevant when needed.

The objectives of ensuring the reliability of the Knowledge Base include:

Ensure Data Trustworthiness: Ensuring that the stored data is accurate, consistent, and complete,
fostering confidence in its validity.

Facilitating Informed Decision-Making: Providing stakeholders with dependable data that serves as a
robust foundation for decisions.

Promoting Ethical Use of Data: Upholding the integrity of data, particularly in Al-driven or critical
systems, to align with ethical standards.

Enhancing Data Quality Continuously: Establishing processes for ongoing monitoring, auditing, and
improvement to maintain and elevate data reliability over time.

Accuracy
e Standardized Data Representation: The schema based on AP239 ensures that data is modelled
consistently and structurally correct, minimizing errors in representation.
e Controlled use of RDL classes/properties ensures that attributes conform to a predefined
ontology, enhancing semantic accuracy Figure 46.

......

Figure 46: Reference Data Library Definition

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 51 of 108

2. Consistency
e Hierarchical Data Organization: A Product Breakdown Structure (PBS) organizes data
hierarchically, maintaining consistent relationships and dependencies between nodes and
associated documents.
e Version Control: Implementing versioning prevents overwriting of previous data, ensuring that
updates do not compromise consistency or historical records.

FAIRWORK_CRF (VER.13) BREAKDOWN PROPERTIES STRUCTURE TREE X

~ o FAIRWork_CRF

<
O (@ CRF

~ @crF
» [@ Cnolnfo
(@ Stevedore Experiences
(& Stevedore Preferences
(3 Stevedore Resilience
(@ Stevedore Suitability
» [@ Stevedore availability

» @UTE4

Figure 47: Breakdown Structure of the CRF Use Case

3. Completeness
e Mandatory Metadata Fields: Every node and document include essential metadata such as:

o Creation Date: Origin of the data.

o Updated By User: Information on ownership and modification history.

o Description Field: Contextual details about the node.

o Default Metadata Attributes:

o Figure 48 and Figure 49 shows the default metadata attributes that will be populated
when a node or document has been created in the knowledge base. This metadata
provides an overview of the created date, updated date, and person who updated this
information.

e Traceability and Provenance: Version control ensures a complete and traceable history for every
node or document, enhancing accountability and data lineage.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu

BREAKDOWN PROPERTIES
Name

Name

Type

GUID

Instance D

Version

Updated

Created by

Updated by

Project Phase

Value
Line18

Unit
2VIp0YcuOHxu00051MKOdM
751619301422

30

11/5/2024, 31700 PM
jotne_rishyank
jotne_rishyank

o]

Figure 48: Node System Properties — Metadata

Page 52 of 108

Figure 49: Document System Properties - Metadata

4. Timeliness
o Timestamps for Currency Verification: Metadata includes creation and update timestamps,
allowing stakeholders to confirm the data's relevance and recency.
o The use of a REST API ensures that users have immediate access to the most up-to-date
versions of data, supporting timely decision-making.

1. Data Storage
o Implementation Details:
o Datais stored in a hierarchical product breakdown structure (PBS) modeled according to the
AP239 schema, ensuring structured and standardized storage.
o Versioning is implemented for each node to prevent overwrites and allow recovery of
historical data.
= Note: Nodes with aggregate properties are not versioned.
o RDL classes/properties enforce semantic correctness and compatibility across projects.
2. Data Validation
o |Implementation Details:
o Validation of incoming data against the AP239 schema ensures compliance with
structural and semantic rules.
o The system enforces mandatory metadata fields (e.g., creation date, updated user, and
description) to maintain record completeness.
o Version conflicts are handled via a controlled update mechanism, ensuring consistent
relationships across nodes.
3. Metadata and Provenance
e Implementation Details:
o Metadata fields (creation date, updated by user, and description) are captured for every
node to ensure transparency and traceability.
o Version control is integral, enabling stakeholders to trace all changes and recover
previous states if needed.
o Logs are maintained for updates, capturing user actions and timestamps to support
accountability.
4. Real-Time Data Access via REST API
o Implementation Details:
o A REST API provides direct access to the database, exposing endpoints for querying
node data, metadata, and versions.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 53 of 108

o APIs are designed to return the latest version of data by default but allow retrieval of
historical versions for auditing purposes.

o The API ensures timeliness by enabling real-time access to updated and accurate
information.

3.4.2 Outlook

To meet the data requirements of Al services, the Knowledge Base needs to be adapted to support efficient storage
and retrieval. Currently, FLEX data files are centrally archived within the Knowledge Base. Integration may be
required if new services are made available (Figure 50).

O [1-Calibration
O @ 2-Document Transformation

O @ 3-Machine Maintenance Database

dJ @ 4-Complaince

Figure 50: FLEX Data stored in the Knowledge Base

3.5 Integrating Al-Services

Within the FAIRWork project, several Al services for different use cases were developed to showcase different
solutions to the problem situations and challenges. In order to sort all relevant input data from the Ul and the
Knowledge Base, the Al services are triggered by the Orchestrator, which collects and combines the different data
in a JSON format that is sent to the Al service. The Al service runs the algorithm considering the relevant data and
sends the result JSON back to the Orchestrator that then decides on what has to be shown to the user and what
has to be saved in the Knowledge Base.

The requests between the Ul, Orchestrator, Knowledge Base, and Al services are done via HTTP requests. Those
requests can handle the JSON files that contain the relevant data in both ways: requests and results. Also,
depending on the HTTP request, different services are triggered so that the user gets the results requested.

3.5.1 Support the Understanding of Decisions through Conceptual Modelling

The goal of this experiment is to create a decision service using a knowledge-based approach to support decision-
making in the Assist Decisions about Fair Worker Allocation use case, which belongs to the resource mapping
decision problem, which is introduced in FAIRWork's D2.1.

For this experiment, decision-makers should be enabled to encode their decision knowledge directly and are then
supported in creating a decision service out of it, which can be used within the DAI-DSS. This service is connected
to the goal described in the section 3.3.2, which enables the configuration of decision services. The configuration
is supported through diagrammatic conceptual models, which are then used as input for the decision service. The

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 54 of 108

service itself offers an endpoint where the parameters are sent, and the decision is returned. This endpoint can
then be used by the DAI-DSS Orchestrator.

The decision service itself was implemented in the free OLIVE?® framework. Here, a connector was enhanced to
consume the models and instantiate a decision endpoint out of it. To do so, the decision logic must be defined,
which is, in this case, done by using models created with the Decision Model and Notation (DMN) language, which
were created with the Bee-Up tool for this experiment.

The decision-making in this experiment is separated into two steps. One is to decide if a worker is allowed on a
specific line to produce a certain product, and the second is to take the group of allowed workers for a group of
production lines and assign them based on their preferences. Then, it is checked that no worker is assigned to
multiple lines. In this experiment, we use the rule-based service configured through the models to make the decision
if a worker is allowed on a production line. Then, the separate worker allocation endpoint is used as a preliminary
prototype to assign the allowed workers to the line.

To prepare a new decision endpoint within this experiment, three parts must be prepared. One is the Bee-Up
modelling tool to define and describe the decision that should be made. The second and third parts consist of the
needed services, which are an OLIVE instance and the worker allocation service.

As a modelling tool for this experiment decision service, the ADOxx-based Bee-Up tool was used, as it is freely
available and had the modelling languages which were used for this experiment. To use it, first, the Bee-Up tool
must be installed on the machine, and then the extensions must be added. Information on how the extension can
be added is available on the GitLab project.

To use a new OLIVE instance with this experiment, the corresponding endpoints must be defined. This must be
uploaded to the OLIVE instance, and then the DMN file must be reuploaded again to use everything (how the DMN
file can be uploaded is described below).

To fully use the implemented decision service for this use case, an additional service is needed, which is called
Rule-based worker allocation. Its task is to take workers who are allowed on certain lines and assign them to the
different lines. Thereby, it takes the provided preferences of the workers and assigns those workers who have the
highest preferences, making sure that one worker is not assigned to multiple lines.

If these three parts are available, the service can be used. Below, it will be described how it was used for resource
allocation.

This section describes how the publicly provided interfaces of this experiment can be used with test data. These
public endpoints were also integrated for an overall decision made with the Orchestrator.

An example of the OLIVE Ul can be seen in Figure 51. To test the provided functionality, one has to choose
FAIRWork Resource Allocation in the microservice drop-down menu and then specify the operation. After the
operation is chosen, the Test a Call button must be clicked.

9 https://www.adoxx.org/live/olive (accessed: 8.1.2025)

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 55 of 108

https://www.adoxx.org/live/olive

Microservice Management ~

Microsenvice ID

Choose Microservice

FAIRWork Resource Allocation v Delete Edit

Operation Name Line Assignment Assessment

Select a Microservice Operation
Line Assignment Assessment

Worker Allocation

Worker Allocation Configurable

Worker Allocation Direct

Stat = Stop = Test a Call

v |@

Choose Operation

Figure 51: OLIVE User Interface for Resource Allocation Experiment

Create New Upload

Download

For testing the service defined with the model, the Line Assignment Assessment operation must be chosen (see
Figure 52). This opens the interface for testing the decision if a worker can be assigned to a specific line. The input
that should be used can be entered in the top left corner. For each parameter used, a field is provided. The values
for different workers can be provided at once by separating the values with “;” (semicolon). The number of values
for each parameter must be the same, the following values:

o Availability: “True” and “False”

e DueDate: Integer between -10 and 10

e MedicalCondition: “True and “False”

o ProductionPriority: “True” and “False”

o WorkerResilience: Float between 0 and 1
o UTEExperience: “True” and “False”

icoRoguicadl

Custom

Availabiity | uefalse

DueDate

true false
MedicalCondition = "o

ue false
ProductionPriorty | true-fal

3
WorkerResilience 06,03

true:false
UTEExperience

Define Input

Test a Call

Miscroservice ID: 29f0860d-3be8-4371-83fe-614e67bed617
7 RS i

POST Endpoint
http://digv575 joanneum at trol

orced'

Output

Service Output Post-Rendering Preview

"DecisionResultList”: [

3be8-4371-83fe-614e67bed6178
POST Input Data

“"Availability": {
"value™: "true;false”

“DueDate”: {
"value": "1;3"

b

"MedicalCondition”: {
“value": “true;false"

}

“ProductionPriority”: {
umtiats whees £

Figure 52: OLIVE Interface for Testing the Line Assignment Assessment Operation

[
{
"WorkeratLine": "1

“WorkeratLine": “@"

Service Output Post-Rendering Preview shows the output of the decisions. For each set of values, an entry in the
array with the key “WorkeratLine” (provided through the model) is given. The value “1” means that the worker can
be assigned, and “0” means that the worker cannot be assigned by the line.

Copyright © 2025 BOC and other members of the FAIRWork Consortium

www.fairwork-project.eu

Page 56 of 108

To test the full experiment, including the assignment of workers to specific lines, then the other operations Worker
Allocation or Worker Allocation Configurable can be used. Both use the Line Assignment Assessment endpoint
introduced above to decide which workers are allowed on a line and then use the results to assign the allowed
worker to the given lines. The difference is that the second one allows you to choose the endpoint for the Line
Assignment Assessment endpoint, and the first one has it pre-configured, so that just the information about the
worker and the lines must be provided.

For the worker allocation examples, default values for the input are provided, which can be used once the interface
is opened. Both can be executed, and the results can be returned in a JSON file containing the production line and
the assigned worker with their preferences.

The endpoints can also be tested by sending POST HTTP requests to them, with the header Content Type set to
application/json. The test data sent directly over the POST request does not completely overlap with the information
provided in the OLIVE Interface.

If a new decision endpoint, using a rule-based approach should be established, the following steps must be taken.
Here, we will not go into detail in how the knowledge for this decision can be gathered, but how it can be encoded
so that it can be made usable as a decision service.

To decide if a worker can be assigned to a specific production line and the products that should be produced on
them, a rule-based decision service should be used, for which first, a DMN model with the decision knowledge must

be created.

The model contains a visual representation of the structure of a decision and the decision logic in the form of a
decision table containing rules. The graphical model with some annotations can be seen in Figure 53. In the middle,
the decision of whether a worker can be assigned to a production line, and the sub-decision, if a worker is on
principle able to work on a line. At the bottom of the figure, one can see the parameters used to make this decision,
and at the top, the objects containing the decision knowledge can be seen.

5 o Worker Able 0O ,|Worker at Line 0
T o R
s & ;
[s] J
A i
|4
\
N ==
%) N .
c ‘\\5 Worker at Line
(=]
S =
‘g
2 Worker Able A
g | | \ | | \
=
]
rEn MedicalCondition Availability GEExpene% CResnence> ProductionPriority DueDate
—
& j—j j—j

Figure 53: DMN Model for the Worker Allocation Use Case

For the parameters, the name and the type must be defined. The type can be defined in the attributes of each
parameter object. The available attributes of the object can be shown by double-clicking it, and to save the type,
the Type reference attribute is used. For sub-decisions (like Worker Able in Figure 53), a type must also be defined
using its Type reference attribute. The Type reference of the main decision (Worker at Line, in this example) defines
the decision service’s result type. The following types can be used:

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 57 of 108

e string (in the CSV, strings must be start and end with quotation marks, e.g., "healthy")

e Dboolean
e integer
e long

e double

The goal of the model is to export the knowledge about the decision in an XML structure based on the DMN
standard'?, which can then be uploaded to the decision service. Therefore, the decision logic is saved in the General
purpose attribute of the decision logic elements, which are instances of the Boxed expression (DMN) class in the
modelling tool. But to make the writing of the decision rules more user-friendly, they can be written in CSV (e.g.,
using Microsoft Excel) and then automatically imported into the model. The modelling tool supports the handling of
these definitions of decision rules, which are called decision tables in this context.

To use the DMN export functionality, the decisions must be linked to the Boxed Expression (DMN) objects using
the Linked Boxed Expression attribute. Therefore, the decision object must be double-clicked, the Linked Boxed
Expression attribute must be found in the Decision logic tab, the plus symbol must be clicked, and the corresponding
Linked Boxed Expression object must be searched.

Under the menu entry DMN Decision service, the different functionalities that help define the decision logic and
export it can be found. Here, the empty decision table with the correct parameters can be created through the
Create decision table. To do this, an object of Decision (DMN) or Boxed Expression (DMN) in the modelling tool
must be marked. Further, the decision table file can be opened with the standard system application by clicking
Open decision table having marked an object of Decision (DMN) or Boxed Expression (DMN) in the modelling tool.
Afterward, the decision rules can be added; an example is shown Figure 54. Each line represents one rule. Within
the rules, either the direct value that must be set for a parameter to be defined, or an expression, like an interval,
using [<star>..<end>] or >, <, >= and <=. After the decision table is defined, it can be loaded into the model by
making the decision or the boxed expression and then clicking Import decision table under the Decision service
menu when an object of Decision (DMN) or Boxed Expression (DMN) is marked in the modelling tool.

Worker Able UTEExperience Resilience ProductionPriority DueDate Waorker at Line
TRUE TRUE [0.0..1.0] FALSE [-10..10] 1
TRUE TRUE [0.0..1.0] TRUE [-10..10] 1
TRUE FALSE »=0.5 FALSE [-10..10] 1
TRUE FALSE »=0.5 TRUE [-10..10] 1
TRUE FALSE <0.5 TRUE [-10..10] 1
TRUE FALSE <0.5 FALSE <=] 1
TRUE FALSE <0.5 FALSE =1 0
FALSE FALSE [0.0..1.0] TRUE [-10..10] 0
FALSE TRUE [0.0..1.0] TRUE [-10..10] 0
FALSE FALSE [0.0..1.0] FALSE [-10..10] 0
FALSE TRUE [0.0..1.0] FALSE [-10..10] 0

Figure 54: Example Decision Table

After the model is completely defined, one can create the DMN file, which can be used as the input for creating the
decision endpoint. This endpoint can be created in two ways, one is to manually upload the DMN file and the other
is to add the information of the OLIVE instance to the model and automatically upload the file to instantiate the
endpoint.

10 Object Management Group. (2023). Decision Model and Notation (DMN).

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 58 of 108

To manually upload the DMN file, the DMN export menu entry under the Decision service must be clicked. At the
end of this algorithm, all the information needed for configuring the new decision endpoint is shown. This is the
Decision key and the Decision variables that will be needed later.

To create a decision endpoint, the OLIVE web interface must be opened in a browser, as shown in Figure 55. To
define a new decision endpoint, an existing microservice must be chosen over the drop-down menu, or a new one
must be created. Then, over the Edit button, a new endpoint can be added.

Microservice Management -
Microservice 1D or = FAIRWork Resource Allocation v Delete = Edit | Create Mew Upload Download

Operation Name Line Assignment Assessment v| @ Stat | Stop TestaCall

Figure 55: OLIVE Web Interface

The interface for adding a decision endpoint can be seen in Figure 56. Here, a new Operation must be added, and
then the needed information must be provided, like the OperationID, Name, and Description. As Connector, the
Camunda DMN Engine Connector Multiple Input must be chosen. Then, the exported DMN file from the modelling
tool, can be uploaded to the DMN File Path, and also the Decision Key and Decision Variables must be configured
as provided at the end of the export algorithm of the DMN file export of the modelling tool. Finally, the Call
Configuration Inputs, which are the parameters the REST call will consume, must be defined. Their names can be
freely chosen, but the Matching Name must correspond to the used in between the % signs in the Decision
Variables. Afterward, this configuration must be closed by using the Continue button on the end, and then the rest
of the endpoint can be used.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 59 of 108

Microservice Definition

Microservice Name | FAIRWork Resource Allocation Description | This Microsenice contains operations for the resource allocatic | Is Public?
New Operation
Operation Line Assignment Assessment -
Operation ID | lineAssignmentAssessment Mame Line Assignment Assessment Description | Line Assignment with data from knov | |s Default?
Connector ~ Camunda DMM Engine Connector Multiple Inp « A connector to an internal Camunda DMN Engine library

Start configuration Call configuration

_3b79c5ed-e9e9-4351-946b-6b58939c 865/ workerAllocation-
2023-Nov-22.dmn

i (]
DMN File Path Decision_32603

Upload Decision Key

Show Details

Delete

Autostart?

4

{"Av a\lab\hl\, "% Availability %" DueDale "%, DueDate%" "Medicalc

Decision Variables .)

Uﬂdmun foF Ied\ca\Cuﬂdmun %" F’ruductluﬂprlum\, "%Production y

Call Configuration Inputs
Add new call configuration Input

Input ID: | Awailability Matching Name Y%Availability% Description Working Sample: | true:false *
Input ID: | DueDate Matching Name %DueDate% Description Working Sample: | 1.3 x
Input ID MedicalCondition Matching Name %MedicalCondition% Description Working Sample: | truefalse : 3
Input 1D ProductionPriority Matching Name %ProductionPriority% Description: ‘Working Sample: | true:false *
Input ID WaorkerResilience Matching Name %Resilience% Description Working Sample 06,03 3
Input ID UTEExperience Matching Name %UTEExperience% Description Working Sample: | truefalse ®

Figure 56: OLIVE Microservice Configuration Interface

The automatic instantiation directly from the modelling tool, was added as an extension to the version described in
D4.2. The extension is based on the concept introduced in D3.2.

The automatic instantiation reduces the manual configuration effort and allows users to quickly deploy, change,
and test the defined rules in a service. Further, different environments can be connected, allowing them to easily
deploy the rules in a testing or productive environment.

Worker Able 0O

~-7 |Worker at Line O

Warker at Line

.
i

-y

/ \\

Medical () Worker
Awvailability I'BSI|IBI"ICB> Groductmn F'r|0@ (Due dates)

Figure 57: Example DMN Model with Microservice Definition Object

Expenence on
the UTE

Copyright © 2025 BOC and other members of the FAIRWork Consortium

www.fairwork-project.eu Page 60 of 108

To achieve this, the standard DMN language was not enough and had to be extended to not only contain the
decision logic but also allowing to save technical information needed to instantiate the service. Therefore, we
enhanced the Bee-Up tool and its DMN language with an additional concept which we called Microservice Definition
(shown as the green box in Figure 57). This concept allows to specify the information needed to instantiate the rule-
based decision service within a running OLIVE Controller. As prerequisite, the generic connecter implementation
for the decision service must be implemented in the OLIVE Controller. This generic implementation is then
instantiated with the information provided in the model, which together with the decision logic is then gathered by
the modelling tool and sent to the OLIVE controller, instantiating a decision service, which can then be called over
a REST interface.

Before the decision service can be instantiated on the OLIVE instance, the Microservice Definition object must be
created and related to a Decision (DMN) object using the Association (BPMN) relation. An Example of such a model
can be seen in Figure 57. The instantiation can be triggered in the modelling tool by clicking Decision service in the
menu bar and then Instantiate Microservice.

The information that can be added to the model is shown in Figure 58. The First three attributes are used only
internally in the modeling tool to identify the object and adapt its visualization. The important information for the
instantiation of the decision service is the OLIVE controller attribute. Here the base URL of the used OLIVE
controller must be provided. For FAIRWork we set up an instance on the server provided by JR.

The information afterward is separated into information about the microservice and the operation. More detailed
information about OLIVE and its concept of microservice and operations can be found at OLIVE (Falcioni, 2021)
For this section, it is important to know that a connector is a generic implementation of an endpoint, which can be
instantiated and configured to fit a specific case. A microservice is a collection of instantiated connectors that are
configured to be used together. The attributes of the decision service are the following:

e Microservice id: This is a unique ID for the microservice on this instance of the OLIVE controller. If an ID
is provided it is used to create or update and existing microservice. If this ID is empty, a new service with
a unique ID is created, which is then saved in the model. If the microservice ID already exists on the OLIVE
instance, the provided operation will be overwritten.

e Microservice name: This is a human-readable name for the microservice.

o Description: A short description of the service.

e Operation name: An identifier for the instantiated connector, which is unique within the microservice. If
this name already exists for this microservice, it will be overwritten.

e Operation description: A short description of the instantiated operation.

e Operation is autostart. Checkbox to define that the operation starts automatically

e Operation is default: Checkbox to define that this operation is the default operation of the microservice.

"Falcioni, D., & Woitsch, R. (2021). OLIVE, a Model-Aware Microservice Framework. In E. Serral, J. Stirna, J. Ralyté, & J.
Grabis (Eds.), The Practice of Enterprise Modeling (pp. 90-99). Springer International Publishing

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 61 of 108

Microservcie definition for DAI-DSS Prototype (Microservice Definition)

MName:
| Micreservcie definition for DAI-DSS Prototype]

Show operation name
[]Show clive centroller

Olive controller:

| https://digw575.joanneurmn.at/micro-service-controller-rest/ |

Microservice information

Microservice id:
| 386a6ec-b3d3-44d6-88b4-62e20969fb T4 |

Microservice name:
| FAIRWork Rule Decision Service |

Description: O

This is a Test Servcie for the automatically created servcie

Operation configuration

Operation name:

Line Assignment |

Operation description: O

This operation supports the decision if a worker should be assigned to a specific
line.

Operation is autostart

[] Operation is default

Figure 58: Attributes of the Microservice Definition Modelling Concept

The sources for the Bee-Up extensions can be found in:

e https://code.omilab.org/research-projects/fairwork/decision-services/bee-up-dmn-extension

To use this extension, one cannot install the Bee-Up tool but must install the ADOxx'? metamodelling platform and
import the library. More information can be found in the GitLab repository.

Independently, if the decision service endpoint was instantiated manually or automatically, it is available as an
OLIVE REST endpoint which can be used by the DAI-DSS Orchestrator. Additionally, a test interface is available
which can be opened on the web interface, by choosing the microservice, then the operation, and click on the Test
a Call. An example for the OLIVE web interface is shown in Figure 59.

12 https://www.adoxx.org/ (accessed: 8.1.2025)

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 62 of 108

https://code.omilab.org/research-projects/fairwork/decision-services/bee-up-dmn-extension
https://www.adoxx.org/

Microservice Management - Choose Microser\/ice

Microservice 1D: ar I FAIRWork Resource Allocation ~ I Delete Edit Create MNew Upload Download
Operation Name: | Line Assignment nent ~v/§@ Start | Stop J| TestacCall O pe N Test

Select a Microsenice Operation

Line Assignment Assessment | nte rfa Ce

Worker Allocation

Worker Allocation Configurable

Worker Allocation Direct Choose Ope ration

Figure 59: OLIVE Controller Interface

This opens the windows shown in Figure 60. Here, values for the defined parameters can be defined, and with the
Text a Call button, the call can be made. When it is finished, the result is also shown in this window. But this
endpoint can now be called with any tool that is able to make POST HTTP calls. The concrete endpoint for this
configured decision service can be found in the test interface under POST Endpoint.

After this configuration, the endpoint, making the decision can be integrated into the overall decision-making
procedure created within the DAI-DSS.

Call Microservice with |D: 29f0860d-3be8-4371-83fe-614e67be4617 Operation: lineAssignmentAssessment

Microservice Required Inputs Custom Rendering Algorithm
Availability e false Javascript algoritm 0M object.
A The algorithm can ac the microservice output content

using the variable "output”
DueDate | 3 /

MedicalCondition ™ falee

ProductionPriority truefalse

B
WorkerResilience | 0603

UTEExperience | TUeifalse

Test a Call

Miscroservice ID: 29f0860d-3be8-4371-63fe-614267bed 617 SRS S I A0 2
: e

1
POST Endpoint "DecisionResultlist": [
http://digva 75 joanneum.at/mi troll /callVi Forced?mi |d=29f0860d- I
3be8-4371-83fe-614e67bedB 17 1
POST Input Data "WorkeratLine®: 1"
i

1
"Availability”: { [

"value”: "true;false” g
b
"DueDate”: {

"value”: "1;3"]

“"WorkeratLine": 8"

1

"MedicalCondition™: { T
"value": "true;false”

b

“ProductionPriority”: {
"value": "true;false”

Figure 60: OLIVE Test Interface

3.5.1.4 Reliability

This experiment and the general procedure that comes with it (as introduced in FAIRWork D3.2), support reliability
by using conceptual models to understand the decision logic of the stakeholders. Diagrammatic conceptual
modelling, as a purpose-oriented abstraction of complex systems or situations, enables stakeholders to better
understand how the decision is made. To understand the decision scenario and configure the decision support the
related methodology uses steps which are again supported by conceptual models, starting in a workshop and later
defining it in more detail.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 63 of 108

Further, the automatic reuse of the modelled information to create the decision service directly uses the captured
knowledge without the need to manually translate therefore reducing the possibility for human error during the
translation. Additionally, defining the decision logic independently in models enables us to instantiate the decision
service in different environments, like an experimentation environment or a productive one. As the model stays the
same, the resulting decision service will behave the same way.

This experiment was used to analyze and showcase one possibility of using modelled information directly as input
for decision services, for one symbolic Al approach. In other experiments and services within FAIRWork, other
ways of using modelled knowledge as input for decision services. In this context further work focuses on how
different services can be integrated with conceptual models, to ease the knowledge exchange. Future work focuses
on both sides, what must the modelling method be able to capture and which functionality must be supported.
Additionally, the service design must consider the possibilities for configuration or understand the modelled
information as input.

But not only individual implementations on both sides (modelling tool and service) should be considered but a
general characteristic should be identified to ease the future integration of new modelling methods or services,
increasing the flexibility of the approach. In OMILAB this integration is used and will be further explored within their
Digital Innovation Environment (DIEn), where a flexible usage of domain-specific modelling methods with services
is needed to establish early experiments to evaluate innovative ideas.

3.5.2 Decision Support through Decision Tree

This section describes an early-stage experiment for using decision tree as configurable decision services with the
DAI-DSS. Therefore, the aim was not to create one decision tree, best suited for a specific decision but to analyse
if and how decision trees can be adapted to new or changing decisions. Here, a configurable service should be
used to allow the creation of different trees for different decision problems.

In the context of this decision service, a model-based approach was also used. This aligns with the concepts
introduced in section 3.3.2. The difference to the service introduced in section 3.5.1 (the rule-based service) is that
decision trees are counted to machine learning approaches, meaning that they are not created by defining the
concrete knowledge but by providing data, and the decision tree is derived from it. The models in this experiment
should be used to visualise the decision tree so that users also have a visualisation of how a decision is made.
Having a comprehendible visualisation capability is also one benefit of decision trees. Additionally, the models
should be used to create test training data for the decision trees.

For this experiment, two parts were created the Decision Tree Resource Allocation service and a modelling
environment, where the decision trees can be visualised. As a decision service, a Python-based service was
created, and for the conceptual modelling, the Decision Model and Notation (DMN) implementation of the Bee-Up’
modelling tool was enhanced.

The main endpoints are the one for triggering a training of a decision tree and the one where a decision tree can
be used to provide an answer. For training the different parameters with their values, the wanted output and an
identifier must be provided. For getting a decision, the parameters and their values must be provided. The additional
provided endpoints can be used to gather information about the available decision trees.

To use the conceptual modelling approach, the Bee-Up tool must be installed, and the extension must be loaded
into the modelling tool. More information on that can be found on the experiments GitLab page'®. This extension

13 https://code.omilab.org/research-projects/fairwork/ (accessed: 18.02.2025)

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 64 of 108

https://code.omilab.org/research-projects/fairwork/

uses the DMN models, which is already available and adds to functionalities. They can be triggered in the modelling
tool by opening the Import/Export component, then click on Model and choose Send Decision Tree or Load Decision
Tree. An example model for a decision tree can also be found on the GitLab project. Figure 61 provides the steps
on how to trigger the functionality.

‘ Bee-Up 1.7: Modelling Toolkit (Admin) - [Bee-Up Start Page]

;__ Model | Edit DMN decision servcie Extras Window Help Export
ADL Import G deortmger) | @B OCON | HX
ADL Export
Export Exercises

\”(ﬁ)0‘§%§ ©

XML Import (default)...

XML Export (default)...

Send Decision Tree

Export for FAIRWork Repository

DMN export
UML Class Diagram 2 Skeleton

Figure 61: Triggering Decision Tree Functionality in the Modelling Tool

Load Decision Tree is to visualise an already trained decision tree in the modelling tool. Therefore, the identifier of
the decision tree and the used endpoint must be provided. Afterwards, the data is gathered, and the decision tree
is visualised. An example can be seen in Figure 62. Additional information about the decision is saved within the
model.

Within this experiment, another functionality of the modelling tool was provided. The idea is that if a new decision
case should be supported, one does not necessarily have all the historical data available to train a decision tree.
Based on the procedure introduced in section 3.3.2, we want to enable people to create test data for the new
decision based on the established decision process and decision models. For this experiment, it is possible to
create mock-up data out of a modelled decision tree, which can be used as the basis for training a decision tree.
This can then be integrated into the overall prototype and evaluated.

For the preliminary experiment introduced here, this data can be created. Therefore, a model like the one in Figure
62 must be created. The leaves are then the end of the decision and must contain the information on what the
result should be. Each other node must contain the possible values for this parameter. The relations in the tree
must contain the conditions of which path should followed based on the linked node. Additionally, the highest node
is the root node, containing the information on how the result should be called and what possible results are
available. For example, a Boolean if a worker is allowed on a specific line or not. What should be mentioned here
is that in this way, the logic of the decision is described and is not necessarily how the trained decision tree looks.
If the decision knowledge should be encoded directly, a knowledge-based approach like the one introduced in
section 3.5.1 can be used.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 65 of 108

Worker suitable for
line 207

T

Worker Available?

A ®

End failure Medical condition?

SN

Experience with the
line?

E AN

Difficulty? End success

¥ *,

End failure 2

Prioirty of
production of
geometry?

AN

Due date?

N

End success 4 End failure 3

End success 2

End success 3

Figure 62: Example of Decision Tree in the Modelling Tool

To save the needed information in the nodes, the General purpose attribute is used. The information must be
provided in JSON format. Below, you will find an overview of the different types of information that must be provided
for the different nodes:

e Root note
o Example: {"possibleValues":[0,1],"type":"root"}
= Possible values of the outcome of the tree
o Leaf
o Example: {"type":"end","result":0}
o Whatis the result of this end
o Intermediate node:
o Example: { “possibleValues":[0,1],"type":"node"}
= Possible values which can be defined for this parameter
e Relation between nodes
o Example: {"operator":"=","value":1}
= Condition when this path is followed. Consists of operator and value

This service was not changed from the one provided in section 2.6.2 of FAIRWork D4.2.

Implementing the prototype gave us insight into how to combine conceptual modelling with the decision services
but was not further investigated as the rule-based approach seemed better fitting to the project. Further, machine
learning approaches are also used by other partners, and therefore we focused on a symbolic Al approach with the
rule-based system, which also enabled us to use it together with conceptual models.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 66 of 108

3.5.2.1 Reliability

The reliability in this prototype is based on using conceptual models to support the explainability of the decision
scenarios. The idea for this experiment was not only to reuse the modelled knowledge but to enrich models with
information from the DAI-DSS. This concrete experiment was not further developed, but the idea was taken into
the general approach for integrating information into models, which is described in FAIRWork D3.3.

3.5.2.2 Outlook

This experiment was not further developed, as other approaches were pursued within the project. But one core
idea of representing the results of the decision service within models was taken and further developed in the
conceptual modelling research track of FAIRWork D3.3.

3.5.3 Resource Allocation using Neural Networks

The Resource Allocation using Neural Networks aims to assist in the decision of allocating workers to machines in
a fair manner within a production environment. Allocating workers to machines is a routine but crucial task in
manufacturing industries. Decisions must be made daily regarding which worker is assigned to operate which
machine. Traditionally, experienced employees manually handled this allocation in the CRF-use case.

The allocation process, initially performed manually by experienced employees, generated substantial historical
data over time. This historical data comprises past allocations and is a valuable resource for optimizing the worker-
machine assignment process. The allocation performed by experienced employees is a function that maps available
workers to specific machines. This function can be approximated using a neural network, allowing the network to
learn and mimic the solution strategies employed by experienced employees without explicitly encoding them.

The neural network employed in this project was implemented using the PyTorch library, a powerful tool for deep
learning applications. The primary objective of the neural network is to predict the "final allocation" column in a
given table based on various input parameters (see Figure 63). By leveraging supervised learning techniques, the
neural network is trained on a diverse dataset, encompassing numerous examples of worker-machine allocations.

This iterative learning approach enables the neural network to discern complex patterns and relationships inherent
in the historical data, effectively capturing the decision-making strategies employed by experienced employees

during manual allocations.
Worker Worker Final
ID< Available Allocation
1 -

100001 1
100002 0 0
100159 1 1

Figure 63: Neural Network Resource Allocation

The data structure used in the demonstrator can visualized in tabular format (see Figure 64). The central challenge
revolves around predicting this table's "final allocation" column. The neural network model, implemented with
PyTorch, is made accessible through a REST API, providing an interface for interaction with other components.
The deployment of this neural network on a server is documented with the Swagger Documentation Standard,

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 67 of 108

which enhances accessibility and usability, allowing users to submit their data and receive predictions viaa Ul in a
web browser. The Swagger Ul is incorporated purely for documentation and test purposes. In the overall system,
the orchestrator interacts with the services via HTTP-calls.

e

10 i Worker Final
Available Allocation
10 10
1 1

10 100001

11 .. 100002 0 0
11

100159 1 1

Figure 64: Historic Data

The training process involves adjusting the network's weights and biases to minimize the disparity between the
predicted "final allocation" and the actual values in the training set. Hence, the quality of historical data significantly
influences the effectiveness of the Pattern-Based Resource Allocation Service. Since the neural network learns
from past allocations, any biases, inefficiencies, or errors in the historical data will be reflected in future decisions.
High-quality data—characterized by consistency, accuracy, and optimal past allocations—enables the model to
generate reliable and efficient solutions. Conversely, if the historical data contains suboptimal decisions,
inconsistencies, or incomplete records, the service may replicate these flaws, leading to inefficient or biased
resource distribution. Therefore, ensuring high-quality training data is crucial for maximizing the service’s
performance and achieving optimal allocation outcomes.

3.5.3.1 Reliability

Resource Allocation using Neural networks fulfills the reliability factors to a high degree, though its effectiveness
depends on data quality and system integration. Accuracy is largely achieved through machine learning models
that analyze structured input data; however, its reliability depends on the correctness of the data provided.
Consistency is maintained by neural networks that ensure uniform allocation principles, though discrepancies in
input data may still introduce occasional inconsistencies. Completeness is well-supported as long as all relevant
workforce, machine, and task information is available, but missing or outdated records can limit its effectiveness.
Timeliness is highly dependent on the data update frequency - real-time or near-real-time updates enable dynamic
and responsive allocations, while outdated information can reduce efficiency.

3.5.3.2 Outlook

The performance can only be validated within a validation environment at CRF. As the amount of historical data is
limited, it would need to be tested in the existing environment. Hence, the performance evaluation is still an open
point. Also, the algorithm is trained to allocate workers for one specific plant. The way it is designed it can be trained
for other plants by inputting the corresponding historical data.

3.5.4 Resource Allocation using Linear Sum Assignment Solver

The Linear Sum Assignment Solver (LinSumSolver) deals with the use-case in assisting in the decision of allocating
workers to machines. The problem instance has several workers and several slots on a machine. One machine, or
more specifically, one order processed on a machine, requires different amounts of workers to accomplish that
order on the specified machine. Some workers cannot perform certain tasks and, therefore, not be assigned to

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 68 of 108

specific slots. For a given cost function that defines how "good" or "bad" the assignment of a worker to a specific
slot is, a cost-optimization problem can be determined. It is required to assign at most one agent to each slot and
at most one slot to each worker to minimize the total cost of the assignment.

Assignment Problems are a generic class of problems, and optimization libraries like Google OR-Tools have
specialized solvers for certain assignment problems. In the case of the demonstrator, one can represent the
allocation problem as a Linear Sum Assignment problem. An example problem instance is visualized in Figure 65.

Worker Slot
® ;
Order 1
@, 5
® :
s
Order 2
® :
:
@ S
Not assigned
to order

&)

Sn

Figure 65: Problem Instance in Linear Sum Assignment Graph Representation

Every order introduces several slots, encoded as nodes, that need allocation. A node is introduced for every worker,
regardless of whether that worker is present. In Figure 65, order one introduces two slots; order two, four slots. For
every worker that is suitable to be assigned to a slot, an edge is introduced between the node encoding the worker
and the slot. The cost function f. determines the weight of the edge. The cost function can be any composition of
functions and mapping of the properties of a worker and the order that results in a scalar value. The implementation
of the library requires that the number of lots equals the number of workers. To adhere to that requirement, one
can introduce not-assigned slots. For every worker and every not-assigned slot, an edge is introduced with a
constant weight that is a supremum of the cost function. That way, optimizing the cost still corresponds to optimizing
the assignment. The not-assigned slot weight offsets the total cost, which does not influence the cost optimization.
The cost of assigning a Worker to a slot can be organized in a matrix.

This service efficiently ensures optimal allocations by meeting machine requirements (e.g., each machine needing
n workers), respecting worker constraints (e.g., skill limitations preventing certain assignments), and considering
personal preferences. By integrating linear sum assignment, the solver guarantees mathematically optimal
workforce allocations. Unlike heuristic or machine-learning-based approaches, this method provides provably
optimal solutions that balance productivity, efficiency, and worker satisfaction. The result is a streamlined
assignment process that enhances operational efficiency while ensuring faimess and compliance with workforce
constraints.

One limitation of the Linear Sum Assignment Solver lies in its computational complexity, especially for large-scale
problems. As the number of workers and machines increases, the size of the cost matrix grows exponentially, which
can lead to significant processing times. Thus, they can become inefficient when handling highly complex

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 69 of 108

assignments with large datasets. In such cases, the time required to find an optimal solution may increase, making
it less practical for real-time or large-scale applications without further optimization techniques or approximations.

The reliability of the LinSumSolver is shaped by several key factors, including accuracy, consistency, completeness,
timeliness, and the effective use of user-defined weights for goal prioritization. The LinSumSolver guarantees an
optimal solution by considering predefined goals, which are prioritized according to the weights assigned by the
user. Conflicting goals are resolved by favoring those with higher weights, ensuring that the allocation aligns with
the most critical objectives. However, the quality of the solution heavily depends on the accuracy of the underlying
model and the appropriateness of the weights, as these directly impact the final allocation. Accuracy is ensured as
long as the input data and cost matrix are correctly defined, but errors in data or weight assignment can lead to
suboptimal outcomes. Consistency is maintained through the solver’s mathematical approach, ensuring that the
same optimal result is produced for identical inputs. Completeness depends on the full representation of all
constraints and goals within the model, with missing or incomplete data affecting the solver’s ability to generate
accurate solutions. Timeliness is influenced by problem complexity, as the solver's computational time increases
with larger datasets and more complex scenarios. Overall, the service is highly reliable for well-structured, smaller-
scale problems but may face challenges with very complex, large-scale assignments.

The LinSumSolver could serve as a benchmark for small planning horizons, offering optimal solutions that help
validate or calibrate more complex algorithms used in services with longer planning horizons. By providing a reliable
standard for comparison, it can support the development and refinement of advanced planning tools for large-scale,
long-term resource allocation scenarios.

3.5.5 Production Planning Service with a Hybrid Approach

This service addresses the use-case of assisting in the decisions about production planning where suggestions for
resource allocation for the production plan are made. This service provides a suggestion for a two-week planning
horizon (see Figure 66) in two steps. First, it solves a job-shop problem by developing a schedule for the production
which includes which parts are to be developed on which machine at which time and order. Second, it assigns the
workers to the tasks. That way this combination can offer a full production plan based on an order list and shift plan.
Therefore, the combines Constraint Programming (CP) for job shop scheduling and Monte Carlo Tree Search
(MCTS) as a Reinforcement Learning approach for worker allocation. This hybrid methodology ensures an
optimized production schedule while efficiently assigning workers to tasks, balancing both machine utilization and
workforce constraints.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 70 of 108

Production Plan Week 49

Monday Tuesday
Line Shift Part(s) Amount Worker(s) Part(s) Amount Worker(s)
55555 600|Michael Jackson 44444 250|Elton John
Jimi Hendrix 33333 700|Tina Turner
1 Bob Marley
17 55555 6001J i
ohn Lennon 22222 1540(|Led Zeppelin
Evis Presley
2

Figure 66: Extract of Production Plan (one line from several, two days from two weeks)

The first step in the service uses CP to solve the Flexible Job Shop Problem by determining an optimal production
schedule. CP formulates the scheduling problem as a set of constraints, such as machine capacities, task
dependencies, and processing times, and systematically searches for feasible solutions while minimizing costs. By
applying constraint propagation and systematic search, CP efficiently allocates tasks to machines, ensuring high
machine utilization while meeting production deadlines. The result of this stage is a structured production plan
specifying which tasks should be executed on which machines, at what times, and in what sequence to achieve
optimal workflow efficiency. However, CP alone does not scale well for workforce allocation due to its computational
complexity, necessitating a separate approach for assigning workers.

Once the machine-task assignments are determined, the second stage employs Monte Carlo Tree Search (MCTS),
a Reinforcement Learning technique, to assign workers to tasks. MCTS is well-suited for sequential decision-
making problems like workforce scheduling, as it explores possible worker-task assignments through simulated
rollouts, evaluating different allocation strategies before selecting the most promising one. This method accounts
for worker availability, skill constraints, and workers preferences, ensuring an optimal and adaptive worker
distribution. Unlike CP, which struggles with the complexity of worker allocation, MCTS dynamically explores
different assignment strategies and refines them based on performance feedback, making it scalable and adaptable
to changing conditions such as last-minute worker absences or priority shifts.

By integrating CP for job scheduling and MCTS for workforce allocation, the service provides a comprehensive
production planning solution that efficiently coordinates machine utilization and worker assignment. This hybrid
approach ensures that production schedules are both cost-effective and operationally feasible, improving
productivity while maintaining flexibility in workforce management.

The reliability of the Production Planning Service depends on accuracy, consistency, completeness, and timeliness,
as well as the strengths and limitations of its two-stage optimization approach. Accuracy is generally high, as CP
guarantees optimal or near-optimal job shop scheduling, while MCTS explores numerous worker allocation
strategies to refine solutions dynamically. As MCTS does not rely on prior training and remains robust across
different problem instances, making it adaptable. Consistency is strong in CP, which always produces the same
result for identical inputs, whereas MCTS, as a probabilistic algorithm, may generate slightly different worker
allocations between runs, though it converges toward optimal solutions over time. Completeness is achieved when
all constraints - such as machine availability, worker skills, and production priorities - are properly defined; missing
or inaccurate input data can reduce solution quality. Timeliness is a crucial factor, as MCTS requires sufficient
computational resources to generate high-quality solutions. While it is an algorithm, meaning it can return a result

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 71 of 108

within a set time frame, at least 5 seconds of computing time is typically needed to achieve near-optimal results.
Overall, the service delivers reliable and high-quality production planning, but its effectiveness depends on problem
complexity and available computing resources,

The integration of CP for job shop scheduling and MCTS for worker allocation has demonstrated strong optimization
capabilities, balancing structured decision-making with adaptability. However, there is significant potential for
further enhancement. One key area of improvement is increasing the scalability and generalizability of the
Reinforcement Learning approach. To achieve this, we plan to incorporate advancements in transferable and
generalizable RL techniques, enabling the system to adapt to new and unseen problem instances more effectively.

Additionally, we aim to refine our MCTS framework by integrating Al-driven innovations inspired by AlphaZero and
MuZero. This involves leveraging deep learning for policy and value estimation, allowing MCTS to become more
efficient and adaptive over time. By combining the backward-looking learning of RL, which extracts patterns from
historical data, with the forward-looking simulations of MCTS, which optimizes future decisions, we seek to develop
a unified and intelligent decision-making framework. This integration would pave the way for Neural MCTS, making
the system more flexible, scalable, and applicable to a wider range of complex production planning and workforce
allocation challenges.

3.5.6 Resource Allocation MAS-based

In the evolving landscape of the manufacturing industry, the advent of MAS has marked a paradigm shift in how
resource allocation is approached and managed. A Multi-Agent-based prototype for resource allocation was
developed for the DAI-DSS prototype. This is an Al service aiming to provide a viable solution to support decision-
making in industrial use cases. The aim of this prototype is to consider characteristics such as worker resilience
and preferences in the decision-making process of allocating workers to production lines.

The system was developed using the JADE'™ framework through object-oriented programming with the Java
programming language, which provides a set of tools to manage and deploy autonomous agents in distributed
environments. This framework is interesting for its ability to facilitate communication and interaction among
industrial agents and for being one of the most widely used in industrial applications.

Two stakeholders were identified: the worker and the production line. The production line needs to have workers
allocated to carry out production during work shifts. This allocation takes place according to parameters identified
in the business modelling. These include the worker's availability, their medical condition related to work in certain
lines, their resilience regarding physiological and psychological strains and whether they have previous experience
working on specific production lines. Furthermore, the number of required workers for each line, whether the
production is mandatory or not, and the remaining days for the required order are also considered in this prototype.

In terms of the explainability of the current prototype, this algorithm can be described as follows: in order to provide
support in deciding the most suitable workers for each line requiring worker allocation, this algorithm takes into
consideration the workers registered in the form of a pool of 159 workers (see Figure 67). The agent representing
a specific line requests a certain number of workers to be allocated according to the production priority and the
order due date. The agents representing the workers calculate a score for each worker based on each worker's
resilience and preference for working on the specific line that requests their allocation. Currently, a weight of 65%
is given to the worker's resilience, and a weight of 35% is given to the worker's preference. Based on this score,

14 JAVA Agent DEvelopment Framework. (2023). https:/jade tilab.com/

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 72 of 108

https://jade.tilab.com/)

the worker agents are ranked, and the fittest ones are recommended to be allocated through a negotiation process
carried out by the Contract Net Protocol (see Figure 68 and Figure 69).

Production Lines

@ @ @ Ranked Workers
e

Rank 1: Worker x4 Rank 1: Worker Rank 1: Worker z4
Pool of Workers yi
Rank 2: Worker X2 Rank 2: Worker yz Rank 2: Worker z;
Worker 1 Worker 2 Worker 3 Outcome Rank 3: Worker x3 Rank 3: Worker ys Rank 3: Worker z3
) Rank 4: Worker x4 Rank 4: Worker ys Rank 4: Worker z4
Worker 4 Worker 5 Worker n Rank 5: Worker x5 Rank 5: Worker y5
Rank 6: Worker Xg Rank 6: Worker yg

Figure 67: MAS-based Worker Allocation Dynamic

Worker Line
Agent Agent

Y

/

T

("'\.
/N /N

CALL FOR PROPOSALJ:|

REFUSEW

PROPOSE—— >

DeREJECT—P ROPOSAL—‘

<>_,

ACCEPT-PROPOSAL—

J—FAH_URE—*-
= \
INFORM-RESULT—

Figure 68: UML Sequence Diagram of the Multi-Agent-based Workload Balance

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 73 of 108

g

FPooooo |y
” dropoos |y
K CFPOED 03)
| crrogpot)

d

F 9

CFPO@ED 15)

Ero@Enn2 Y
PROPOSEDO M 0 109 1 51

PROPOSE.D 0 109 0 1)
PROAOSED (9.0 111]0 4)

PROPOSED M 0 111 03
PROADSE:D (8.0 11
PROAOSED (3 0 1119 0)

L, ACCEPT-PROPOSALD (9.0 7.0 111
o " | FEJECTPROPOSALO 6.0/ 122 111)
REJECT-PROPOSAL0 (B0 116 10B)
REJECT-PROPOSALD (3 0] 121 111)
REECTPROPOSALD § 0 121 11)
- REJECT-PRQPOSALO @] 121 110)
REQUESTA (56 64)
INFORM:1 (55 159 §-

WM o~ m M e W = O
F 3

Yy YoV Y YYyY

=
F Y

&
F Y

o
*

o

]
=
v

INFORM:O 2[00 156 7 0]

v

REGQUEST 357 87)
INFORM:3 (57 542 8-7)

o]
=l
F 9

Ll
@
v

FPA4@ D001 |)

FPa@0o02 |

by
F 3

PROFOSE4 (8 0 0750 1)

PROFDSE4 (90 077(0 2)

Yy

CFP4@ N a0

.
i
F 9

CFP4@N 23)
PROPOSE4 (B 0 054 2 33

f
m
F 9

PROFOSE4 @ 0 084 9 0)
ACCEPT-PROPOSAL4 B 0 7 0 O075)

REJECT-PROPOSAL4 (8 0) 095 077)

REJECT-PROPOSAL 4 (8 0 095 084)

Yy

s
@
F 3

4]
=
F 3

REQUEST:A|(1-8 1-8)

o
F 3

REJECT-FROPOSAL 4 (3 0 055 05H

a1
]
F 9

INFORM:S (1} 103 1-8
53 . . b

INFORM:4 (3 0 101 F 0)

o]
=
h

Figure 69: Worker Allocation Agent Message Exchange Example

This Al service focuses on the multiplicity, scalability and decentralisation aspects where multiple agents can be
deployed in multiple production lines spread along the factory. The number of existent agents can vary over time,

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 74 of 108

and the system can deal with this dynamically, adapting to the available agents and recommending the workers
that best suit the particular line.

This application of MAS for resource allocation in manufacturing not only represents an interesting approach to
workforce management but also represents a form of integration between Al technologies with humans playing a
core role in the task involving people and machines. By integrating Al services into decision-making processes, this
prototype prioritizes factors like worker resilience and personal preferences, ensuring a more human-centric
approach to industrial operations.

Reliability in MAS comprises robust communication, fault tolerance, and adaptive decision-making capabilities. The
development of agent systems in closed environments is particularly advantageous for industrial applications,
where reliability and consistency are paramount. Closed environments provide a controlled setting, enabling the
system to function with consistency and precision. A key benefit of closed environments is the controlled agent
population. In such settings, the behavior of agents is well-defined, and their interactions are carefully designed to
avoid destructive competition or defection. This level of control significantly reduces uncertainties that could
otherwise arise from the introduction of unverified or unknown agents. Additionally, the controlled nature of closed
environments facilitates testing for industrial applications. Comprehensive testing is relevant to minimize the risk of
unforeseen errors during operation, further enhancing system reliability. In industrial applications such as
manufacturing, the reliability of MAS is non-negotiable.

Another relevant aspect is the standardization of agents. Predefined protocols and standards such as FIPA-ACL
(Foundation for Intelligent Physical Agents — Agent Communication Language) ensure consistent communication
and interoperability. Furthermore, JADE (Java Agent DEvelopment Framework) ensures reliability in MAS through
its modular architecture and robust agent management features. It provides a middleware platform that adheres to
the FIPA standards. It supports fault tolerance by enabling agent recovery and replication, ensuring that the system
remains operational even in the event of individual agent failures. It facilitates the creation of robust MAS suitable
for both research and industrial applications. With tools for monitoring agent interactions, JADE facilitates the
creation of MAS suitable for both research and industrial applications.

Ultimately, the structured design of MAS developed makes them safe and compliant with industrial requirements in
terms fo reliability. The systematic approach ensures that MAS can deliver reliability.

The Ethical Watchdog Agent was developed to provide decision support in order to alert the decision-maker to any
pre-established and previously analyzed factor in the process that is infringing on an ethical issue. Therefore, the
aim of this watchdog is to sound an alarm every time the result of a worker allocation process infringes an ethical
rule observed by the watchdog. Figure 70 illustrates the process in which the watchdog operates.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 75 of 108

Sy @ ®
< T g

System’s decision
Negotiation y

Balance of: Decision-maker =2~ Watchdog
- Workload, preferences, ;« h raises alarm

demographic aspects

Workers

Figure 70: Watchdog Raising the Alarm

The negotiation for allocating the most suitable workers to a given production line takes place taking into account
data such as the resilience to carry out the given task on the line and the worker's preference. Also, important
parameters for conflict resolution were added to the newest version of the prototype. Whenever the score of a
worker is assigned ties, a parameter for experience on the line and job rotation plays a role in improving the conflict
situation. Job Rotation is the value that represents how repetitively the given worker has been assigned to the
current task in a sequence, with the experience on the line parameter measuring how many times the worker has
been assigned to that task since they began working in the factory. The result of this first round is composed by the
score formed by the worker’s resilience and preference with potential conflicts addressed by looking into the job
rotation and experience on the line parameters. Then, after this first round, the watchdog analyzes whether any of
the parameters it monitors have been trespassed. In this example, the result of the allocation was 5 workers of
gender male. However, for this demographic variable, it was expected that the result would include at least 50%
workers of gender female allocated to this production line. The Watchdog Agent then raises the alarm and informs
the decision-maker which parameter exceeded the expected value for the given ethical issue.

Figure 71 illustrates the rest of the process and Figure 73 is an example of the watchdog message exchange in the
JADE interface. The decision-maker receives the alarm sounded by the watchdog as input, and being responsible
for triggering the renegotiation action, does so. Then a second round of negotiation begins in which the parameter
monitored by the watchdog is observed. Finally, the system recommends a solution in which that parameter is
obeyed. At the same time, the workers' resilience and preference are also observed in order to provide a result that
simultaneously maintains attention to the parameters that led to the result of the first negotiation and that are desired
for production.

@ ® =
o ﬁ%ﬁ

Asks for New decision addresses

Decision-maker takes r i
watchdog output renegotiation ethical issue

Figure 71: Renegotiation to Comply with the Watchdog

The final result shows that three workers of female gender were recommended for allocation, which is in line with
the ethical standards previously established. One can see the UML sequence diagram in Figure 72.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 76 of 108

sd FIPA CNP protocol (adapted for renegotiation)

/

the criteria
are met

negotiation until

'
'
'
'
'

LineAgent WorkerAgent WatchdogAgent
Ioop) : call for proposal o
alt . refuse !
i calculate i
; price '
i propose :
decision-making H H
[mechanisms ' '
alt reject proposal
accept proposal :
provisional (waiting T:I
confirmation from T
the watchdog inform results
agent) e : analysis based on
i ; predefined criteria
: : |: (e.g., age)
alt : _ request renegotiation based on predefined criteria
renegotiation | .. L __
begins (loop) L inform ok
|: canfion:sliocation »>— | end of (re)negotiation

Figure 72: UML Sequence Diagram Updated for Renegotiation with the Watchdog Agent

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu

Page 77 of 108

Los_ 1640 5780

Los_ 1640 5780

Los_ 1640 5780

Los_ 1640 5780

Lo E_1l 640 8783

Lo E_1l 640 8783

L0 (6_1 640 266)

L0 (6_1 640 266)

L0 (6_1 640 266)

L0 (6_1 640 266)

L0 (6_1 640 266)

L0 (6_1 640 266)

L0 (6_1 640 262)

L0 (6_1 640 262)

L0 (6_1 640 262)

L0 (6_1 640 262)

L0 (6_1 640 262)

L0 (6_1 640 262)

L0 (6_1 640 266)

L0 (6_1 640 266)

L0 6_1 640 266)
1

L0 (61640 266

L0 (61640 266

L0 (61640 266

L0 (61640 266

L0 (61640 266

L0 (61640 266

L0 (61640 266

L0 (61640 266

L0 (61640 266

INFOR A (15d 026 3
%

FORM:Z (G0 |3

v

FORM:4 (d7d |3

I
>
]

INFORM:S|@3a 3

w

Figure 73: Watchdog Message Exchange after Renegotiation

In Figure 74, one can see the result of the decision process and the WatchdogAgent in action. For Line 17, the
result of the first negotiation violated the age criteria (the age average for workers must be under 30 years old)
established for the ethical matter in this scenario. Therefore, the WatchdogAgent signaled that this criterion was
not met. The decision-maker then has the option of asking for a renegotiation that includes the obligation to meet
this criterion, or they can choose to maintain the original allocation recommendation. In this example, the decision
was to trigger a renegotiation in order to choose the best workers for the job, but who also meet both ethical criteria
(minimum average age and gender distribution). In the field below the first negotiation, you can find the result of
the renegotiation and see that both ethical criteria have been met. The same applies to Line 18. For Line 20, no
ethical criteria are met in the first negotiation, since it only includes the resilience and preference factors of all the
workers. Therefore, when the decision-maker opts for renegotiation, the best available workers who jointly have an
average age of less than 30 and at least half women are recommended for allocation.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 78 of 108

Criteria: [“criteria_age_not_satisfied", "criteria_gender_not_satisfied"]

fenegotition: “
ene: n result:

Criteria: [“criteria_age_satisfied", "criteria_gender_satisfied"] Criteria: [“criteria_age_satisfied","criteria_gender_satisfied"] Criteria: ["criteria_age_satisfied", "criteria_gender_satisfied"]

S

Figure 74: Interface for the Agent-based Service

In this way, an instrument is made available to support the decision maker not only with data relating to production
and preference issues, such as the data relating to human resilience and preference, but also to offer an analysis
of the ethical factors that result from that recommendation, always aligned with the factors of interest to be observed
in each specific use case.

The development of a Multi-Agent-based service prototype within the DAI-DSS framework demonstrates the
significant potential of integrating human-centric considerations into industrial decision-making through a
decentralized and agentic perspective. Factors such as worker resilience and preferences play a decisive role in
representing human integration and representation in the decision-making process. It showcases a scalable,
decentralized, and adaptable system capable of managing workforce allocation to production lines highlighting a
human-centric resource allocation, and contributing to future advancements in decision-support systems in
industrial contexts.

Looking ahead, the integration of MAS with LLMs in resource allocation offers an exciting frontier for MAS-based
applications. LLMs can enhance MAS capabilities by providing advanced natural language understanding, enabling
richer and more intuitive interactions between agents and stakeholders. This integration will help the incorporation
of complex, context-aware human inputs and further refine decision-making processes in an agentic approach. This
agentification allows for more efficient communication through the division of tasks in processing the demands of
LLMs. It is an advance towards more autonomous, intelligent, and human-aligned industrial systems that further
embody the principles of Industry 5.0.

3.5.7 Truck Loading Service

The truck loading service is an experiment that aims to optimize container loading on trucks in terms of filling the
volume of the existing trucks of different sizes and therefore, to use the least amount of trucks and assist in
decisions regarding these containers’ shipment. This service aims to address the shipping process by streamlining
the decision-making steps involved in container placement and truck selection. The correlating container
dimensions with truck capacities, the service devises loading strategies that maximize space utilization.

The truck loading service takes the shipping plan and the relevant logistical data as inputs to determine the optimal
container placement and truck allocation. It begins by evaluating each shipment’s due date and the specific
requirements of the contained products. Once the shipment is deemed ready, containers are loaded into trucks,
and the system analyzes truck saturation to identify any free capacity. If a truck is underutilized, alternative truck

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 79 of 108

options are considered, or additional product geometries may be incorporated to better fill the available space. In
cases where neither adjustment achieves the desired efficiency, the service flags the shipment for further review,
potentially prompting communication with the customer to consider schedule adjustments. This decision-making
process considers container compatibility, truck capacity, and dynamic shipping constraints to optimize resource
allocation.

Atits core, the truck loading problem can be modeled as a variant of the classic bin packing problem. In this context,
containers, each with distinct dimensions and loading requirements, are analogous to items that must be packed
into trucks, which represent bins of fixed capacity. The primary objective is to minimize the number of trucks used
while accommodating the varying sizes and geometries of the containers. Given that the bin packing problem is
NP-hard, achieving an optimal solution in every case is computationally challenging. Nonetheless, the field of bin
packing offer valuable insights that can be adapted to enhance truck loading efficiency.

Heuristic and approximation methods provide practical strategies for addressing the truck loading challenge.
Sorting containers based on size or other relevant attributes and then sequentially placing each container into the
first available truck that can accommodate it strike a balance between computational efficiency and effective space
utilization. Although these methods do not always guarantee an optimal solution, they have proven effective in
managing shipping demands and dynamic loading scenarios.

The truck loading service is reliable because it follows a systematic approach. This means it matches container
dimensions with truck capacities. This ensures consistent optimisation of space utilisation and minimises the risk
of underutilised vehicles. The service also has the additional capability of flagging shipments that fall outside of
optimal efficiency parameters. It provides reliable feedback and allows for proactive intervention. This ensures that
potential issues are identified and addressed before impacting delivery schedules.

Currently, the truck loading service is designed to optimize container loading across a fleet of trucks with varying
capacities, with a focus on minimizing the number of trucks required while maximizing shipment efficiency. Its
modular design allows for easy adaptation to different shipping environments and logistical challenges. In future
iterations, the system could integrate additional variables such as traffic conditions, weather patterns, and driver
schedules to further refine its loading strategies. As data quality and algorithmic sophistication continue to improve,
the service is expected to become an integral part of comprehensive shipping and logistics management, enhancing
operational efficiency and customer satisfaction across the board.

3.5.8 Support Machine Maintenance using RAG and LLM

The idea is to use a chatbot to support the maintenance of machines via natural language interaction. To enable
maintenance workers to query information about machine maintenance by using natural language for instance on
a mobile device providing audio/voice responses, the following four aspects are considered relevant. First,
structured information can be collected via ADOIT'® used for modelling IT infrastructure for example the different
databases for maintenance information as well as instances of (enterprise) architecture-relevant concepts. Second,
not only structured information, but also unstructured information such as the maintenance history or relevant notes
stored in documents containing text and images, must be handled. Here, LLMs are used to interpret these
documents, identify patterns, establish a structure and get chunks of the domain or use case-specific information
in the LLM. Third, natural language querying is expected to improve the interaction of the maintenance workers
with the Al by using edge devices such as mobile phones to ask queries on the status of specific machines. Here,

15 https://www.boc-group.com/en/adoit/ (accessed 03.02.2025)

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 80 of 108

https://www.boc-group.com/en/adoit/

the prototype processes these queries and returns the machine maintenance status information. Fourth, via a
mobile or desktop, it is possible to ask queries via voice or text and also to receive the response in audio or written
format. The LLM accesses various information sources to deliver meaningful answers. When using the desktop
version, the answers are longer, contain links to the corresponding documents, and include figures, while the mobile
version provides shorter answers. The overall concept is depicted in Figure 75.

Domain Specific Knowledge
(Meta Model)

A

2, Natural Language @
\{)@ <:> Processing &
m Understanding [Large Language Model (LLM) & @

Retrieval-Augmented Generation
(RAG)

Microsoft
Salesforce
SAP

Domain Specific Need

AWS Adobe

Interaction Domain Model Knowledge

Figure 75: Concept for Machine Maintenance

The prototype uses the principle of RAG patterns to improve the quality of the LLM’s response by including external
knowledge stored and retrieved from vector databases. The knowledge about maintenance is stored in 1)
documents and manuals and potentially includes information stored in models such as definitions of the data
sources, their architectural and infrastructure aspects, and 2) what is available on the Internet. Therefore, RAG is
used to forward the LLM to retrieve the relevant information from predefined knowledge sources not used for its
training. In this case, it guides the LLM to use in addition to its trained knowledge, the information of the FLEX
maintenance documents so that answers are based on the more precise domain knowledge.

AN /

Retrieval Augmented Generation

{
query

I Y
o (0]
m N

System User

Figure 76: RAG Concept for External Knowledge

Two major building blocks are relevant to creating the machine maintenance prototype, which are the application
configuration and the wiring. The configuration covers all relevant information and definitions such as client
components or client functions and defines the wiring to handle endpoints, connectors, and flows. The wiring
manages the steps that are executed to transform the uploaded file into suitable input for the vector database model
by bringing together the following endpoints:

o doc-extractor: The endpoint can interpret different document types (doc, docx, pdf, txt, ...) and extract
textualiimage content.

o semantic-splitter-chunking: The endpoint splits the extracted text into smaller chunks adhering to a
certain length and semantics.

o excel-chunking: The endpoint creates a chunk for each Excel sheet row.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 81 of 108

¢ image-to-text: The endpoint extracts text from an image.

¢ transform-image-desc-to-text: The endpoint transforms the extracted image description from “image-to-
text” into chunks.

o transform-chunks-for-queue: The endpoint transforms the created chunks (e.g. from Excel rows) into
the format that is required to execute the request-queuer service.

o request-queuer-sender: The endpoint sends the formatted chunks to a queue service that processes
and stores the chunks in the vector database.

o vector-service-search-maintenance: The endpoint uses the capabilities of a "vector-service-search"
lambda function and returns a valid user response based on the "maintenance” index.

For chunking file content to be uploaded in the vector database there are two options, either the input file is an
Excel or another file type. In case the file that was extracted by the “doc-extractor” is an Excel, chunks for each row
are created using “excel-chunking”. The pieces are prepared by transforming the chunks via “transform-chunk-for-
queue” and sent to the queue service with “request-queuer-sender” to be stored in the vector database. In case the
extracted file was a PDF or another file type, the chunks are created using “semantic-splitter-chunking”. The pieces
are prepared by transforming the chunks via “transform-chunk-for-queue” and sent to the queue service with
‘request-queuer-sender” to be stored in the vector database. In parallel to the chunk splitting, each picture that was
extracted by the “doc-extractor” has to be transformed as well. For this, the text from a picture is extracted via
‘image-to-text” and afterwards the image text is transformed into appropriate chunks using “transform-chunks-for-
queue”. As with all other chunks, they are sent to the queue and the database as a final step.

The sample flow of uploading the data (chunks) into the vector database (used by the LLM) is as follows: (1)
uploading the documents in the prototype interface in docx, pdf or xlsx format, (2) “submit” the upload, and (3)
check the number of chunks that have been created and that were stored in the vector database.

The retrieval of information is based on the RAG concept using the Agentic Knowledge Retrieval approach with
LLM-based agents. For this, an agent pattern is created in LangChain that aims to fulfill the goal of answering
maintenance questions from the user. Usually, an agent does this by defining sub-goals, decomposition, reflection,
and refinement, however, in this use case the goal is known and a fixed pattern for how to solve the problem can
be provided. The agent can access its short-term memory enabling in-context learning and being aware of the
interactions that happened before. This is important for the maintenance use case as dialogue can occur between
the agent and the user asking questions. Also, the agent could access its long-term memory which is composed of
information that is available to the agent stored over extended periods, in most cases in the form of vector stores.
However, in this prototype, the maintenance vector store and its quering are seen rather as tool usage. Tools allow
the agent to call external APIs to solve the goal. This can be for example a search on the internet. In the case of
maintenance use case querying the maintenance database, ADOIT, the internet or the knowledge of an LLM could
be done with the agent since external APIs are invoked.

As an LLM, the general purpose LLM model "GPT-40" from OpenAl is used to differentiate between tools by using
an agent approach and to initialize data into the vector database. Different LLMs may be configured to receive
better results for targeted requests. The OLIVE framework connects the individual endpoints ranging from the
uploading of the document to the model creation. Itis used to improve the prompts and select suitable LLM models
for individual endpoints. Also, OLIVE supports the creation of an application that can be considered a Ul.

For enhancing Al reliability the proposed model-based framework of D3.3, on the one hand, the idea of using
workflows and conceptual models as Al steering technologies to LLMs is applied, on the other hand, the usage of
RAG targets to increase factual accuracy through reducing hallucinations (Figure 77). Each time a question is
submitted by the user, an agent pattern defines which tool to use based on the user input. The different tools have

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 82 of 108

a description of the capabilities and an overview of the stored data elements. Different tools can be configured in
the agent config which is defined in the “agent-maintenance-showcase” step under "toolEndpoints”. Additionally,
the agent is guided with a specific prompt applying prompting techniques to enhance it with context information to
the different data sources. In the maintenance case, the agent is accessing information based on the RAG principle
and accesses the “vector-service-search-maintenance® where the domain-specific documents of FLEX
maintenance are stored. To enhance the reliability of the provided information and maintenance instructions, the
prototype includes links to the source documents in the Ul where the provided information by the LLM-based
Chatbot can be double-checked.

has Connectivity

User s Agent Multitool Connector

agent- dashboard-

maintenance
showcase

uses tool

Figure 77: Workflow for Machine Maintenance Prototype

Currently, the prototype provides correct answers and references the right documents stored in the vector database.
Therefore, the Al scope is limited to certain very specific use cases, where RAG patterns are used to improve the
quality of the LLM response including the usage of external sources of knowledge. However, the questions must
be very precise so that the chatbot gives back the right answer. Here advancements could include fields in the Ul
that can better guide the prototype to the answers. Additionally, a general improvement in the natural language
understanding should be made. It provides good answers for English or German input but with background noise
or dialect the chatbot faces difficulties.

3.5.9 Document Transformation using LLM

Al - specifically LLMs — can be applied to convert unstructured documents into structured business process models
(BPMN). Al support during the transformation is of high interest e.g. FLEX who has already a lot of instructions
documented but in unstructured ways to reduce time and manual effort. In the conversion process, the role of Al is
three-fold. First, the content of existing documents is interpreted by using large LLMs to understand the concepts
and identify relationships. Here, LLMs may consider domain-specific knowledge to interpret the document context.
Second, Al is used to handle different media types in documents such as plain text, titles, section headings,
numbers, listings, images and the like. Third, LLMs can be used for lay-outing and positioning of the elements in
the BPMN model. The output of the text-to-model Al services consists of structured process models describing the
document content. Human experts are still needed to check the Al-generated processes and finally approve them.
The conceptual overview is illustrated in Figure 78.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 83 of 108

[Domain Specific Knowledge

(Meta Model) } @ [

Large Language Model (LLM) & @ @ — —
Retrieval-Augmented Generation . - - . Jame| O

(RAG)

Knowledge Domain Model Generation Domain Specific Models

Figure 78: Document Transformation Concept

The models are created with the same process modelling tool ADONIS that was already used for creating the
decision processes of FLEX (described in FAIRWork D5.1). As an LLM, the general purpose LLM model "GPT-40"
from OpenAl is used to interpret the document, create a model JSON file out of it, and lay out the model. Different
LLMs may be configured to receive better results for targeted conversion (e.g. requiring specific domain knowledge,
etc.) requests. The OLIVE framework connects the individual endpoints ranging from the uploading of the document
to the model creation and is used to improve the prompts and select suitable LLM models for individual endpoints.
Also, OLIVE supports the creation of an application that can be considered a Ul.

As for the machine maintenance prototype, the application configuration and wiring are again two major building
blocks. The configuration covers all relevant information and definitions such as client components or client
functions and defines the wiring to handle endpoints, connectors, and flows. The wiring manages the steps that are
executed to transform the uploaded .docx file into an ADONIS model by bringing together the following endpoints:

o doc-extractor: The endpoint can interpret different document types (doc, docx, pdf, txt, ...) and extract
textual/image content.

o transform-text-prompt, output-to-prompt and model-json-to-doc-list: These endpoints transform
JSON data so that the output of a node fits the input for the next node.

o process-text-to-model-json: The endpoint interprets the text to identify nodes and edges of the model
and creates a JSON out of it using the LLM "GPT-40" provided by "OpenAl".

o layout-model-prompt: The endpoint adds position information to the nodes to provide a layout for the
model by using the LLM "GPT-40" provided by "OpenAl".

e insert-image-to-model: The microservice endpoint takes the image URLs from the doc-extractor and
adds to the model for each image a note element (C_NOTE) depicting the image.

e create-model-adoxx: The microservice endpoint communicates with a REST interface of an
OLIVE extension allowing the creation of a model.

The sample flow of document conversion is as follows: (1) uploading the documents in the prototype interface in
docx, pdf or xIsx format with “submit’, (2) a link to the generated model in ADONIS will pop up, (3) the model
contains the process tasks extracted from the uploaded document plus images as note objects, and (4) document
details are included in the relevant process tasks. An example output for the FLEX document transformation is
shown in Figure 79.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 84 of 108

iy s -
- il

Rl e -
. e

Figure 79: Sample Output of Document Transformation

For enhancing Al reliability the proposed model-based concept of FAIRWork D3.3 and the idea of using workflows
and models as Al steering technologies is applied. Figure 80 illustrates this for the FLEX prototype “document to
the business process model.

g D o L
E Quality! toring. docx
SUBMIT
r
LL onsubmit |3 extra ot text extract BPMN layout insert images create model display result

Foliow links to see the models that has been created
Quality Control Process for Manufacturing

Figure 80: Model-based workflow for Document Transformation Prototype

Each time a document is uploaded the LLMs come to different results, hence, the workflow-based principle aims to
guide, create transparency, and support reliability. For each of the steps, certain prompts and requirements are
defined that must be considered or complied with. For, example, when uploading the document and pressing the
“submit” button, different components and services of the application are triggered. In the component “extract text”
a service is used to interpret different types of documents like docx, pdf, txt etc., and extracts the textual content
and the contained images. Under “extract BPMN” a prompt for interpreting text and generating a JSON supported
by the LLM is used to analyze the data and create the corresponding model. Additionally, the “layout” step includes
an engineered system prompt to provide concrete information to the LLM on layouting the BPMN model. The prompt
includes a generic description of the target diagram and BPMN foundations. E.g. information that it contains nodes
and edges, the number of pixels needed for the nodes, the flow direction and positioning, or some information on
the JSON schema. Then there are multiple other steps defined in the workflow to guide the Al to the final result.
Addionally, multiple prompting techniques are used to specify the required output. These include e.g. Instruction-
Based Prompting, Structured Output Prompting, Contextual Prompting, Conditional Logic in Prompting, and
Summarization Prompting

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 85 of 108

Two aspects need to be considered for this prototype. First, the result may differ each time the service is executed
although the input document is the same. Generative Al is not deterministic, since the Al is trained on huge data
sets serving as an input for the requested answer. The Al reacts flexibly and creatively when choosing the relevant
data to produce an answer resulting in different answers. From a more technical perspective, generative Al is not
deterministic, as it is based on probabilistic models. It uses probabilities (learned from the huge training data sets)
to run through neuronal networks to forecast the solution evolution. Thus, although the LLM can help with analyzing
and structuring information, the variability must be taken into account otherwise it is not feasible to use it.

Second, depending on the document content, data privacy concerns may arise. At the moment, services from
OpenAl (a third-party Al provider) are applied, which could require compliance checks to ensure that users' critical
production documents are kept confidential. A workaround for these privacy concerns is to host the LLM model
within the use case company or a trusted partner, still, external providers (e.g. AWS, Azure, etc.) for the hosting
infrastructure may be needed.

3.5.10 Support Compliance for Clean Room using RAG and LLM

For compliance for FLEX clean rooms, the customer wants to compare entirely different documents or different
versions of one document to support the employees in having an overview of the latest relevant compliance
regulations. For example, periodically, new versions of a regulation become effective in the European Union or one
of its member states and to get a rough overview of the changes and if it is relevant for which country, an Al solution
that provides a rough summary of the changes without having to go through the entire full document. Thus, Al can
support gaining an initial overview and provide inputs of what is relevant and applicable to a company.

The rough general concept for “compliance document comparison for Clean Rooms” covers four main steps and
applies the RAG concept. First, LLMs, “GPT4-0", are used to chunk the document into smaller pieces and store
information about the contents of those pieces in a vector database. For this step, the uploaded documents are
split into chapters which are again separated into paragraphs. Then for each paragraph, a semantic summary is
created using the LLM. All paragraph summaries are utilized to create an overall chapter summary and the
paragraph as well as the chapter summaries are stored in the vector database. The second step targets the search
for similar contents between the two documents by using the vector database. For the comparison, each chapter
of the document is analyzed to find a semantically similar chapter in the other document. If a resembling chapter is
identified, in the third step, the smaller document chunks, the paragraphs, are searched and compared for similar
information with the help of LLM. Additionally, any paragraph not contained in the other document is remembered.
In the last step, based on the complete list of all found document differences between chapters and paragraphs,
the LLM is used to categorize them and create an overall summary. The overall process is depicted in Figure 81.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 86 of 108

(Vector DB

4 Document Version 1 A\ Document Version 2

=))

pore with LLM,

with L0

—

Figure 81: Document Comparison Concept using Vectors

The execution of the Al solution is triggered by entering the document names in the corresponding lines of the Ul
and pressing the submit button. Then depending on the document size it usually takes about two minutes to
complete the comparison check and a summary of all differences is provided in the output. For large documents, it
can take up to 15 minutes. A benefit of the applied concept of extracting the semantic context of various documents
and transforming it into vectors is that it is also possible to compare the context to other forms of data like repository
data.

3.5.10.1 Reliability

For the compliance document comparison application, a workflow that includes the integration of the vector
database and RAG, as well as for some steps of sequential LLMs usage to generate the outputs. The LLM is guided
via precise prompts to receive the desired output and enhance their reliability. The prompts include the description
of the received input format of the previous step of the workflow, a detailed description of its task and the
specification of the output format JSON. A combination of multiple prompting techniques are used and include
Instruction-Based Prompting, Structured Output Prompting, Contextual Prompting, Conditional Logic in Prompting
and Summarization Prompting.

3.5.10.2 Outlook

The document comparison works best with similar documents and document structure. The higher the variability of
the documents to compare, the harder it is to sum up all the important differences. For example, the comparison
with LLMs of document versions with similar structures performs better in detecting differences, than entirely
different documents or ones with completely different structures such as comparing information in text form with
information in table form.

Potential advancements of this Al application include an improvement in the parsing of tables. This will lead to
general improvements in detecting differences, as a high ratio of the FLEX compliance documents describes the
compliance standards in this way. Secondly, the handling of subchapters can be improved. The idea is to parse
subchapters instead of root chapters to enable the detection of similar chapters across different document
structures.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 87 of 108

3.5.11 Calibration Certification Service

After a device is manufactured, it must undergo validation to ensure its accuracy and reliability. Calibration issuers
are responsible for testing the device and issuing a certificate containing all the essential details about the tested
device and the calibration test cases. FLEX processes approximately 3,000 such certificates annually. Currently,
these certificates are manually reviewed for formal errors and test results, a process that can take upwards of 10
minutes per certificate depending on the document's length. This time-intensive task involves data comparisons
from various sources to ensure that only certificates with accurate information are deemed valid. By enhancing the
efficiency of this process, the certificate validator significantly streamlines FLEX's workflow.

The format of a calibration certificate varies depending on the issuing laboratory. Presently, the majority of
certificates FLEX receives are issued by the laboratories MicroPrecision and TESI. Despite differences in layout
formatting, the core information contained in the certificates remains consistent and typically includes:

o Details about the device undergoing testing

MPC Control #: 3062

Asset ID: 3062 | URS 6.0

Gage Type: MULTIMETER |URS 2.0
Manufacturer: HEWLETT PACKARD |URS 3.0
Model Number: 34401A [URS 4.0

Size: N/A
Temp/RH: 21.1°C/48.9%
Location: Calibration performed at Customer's facility

e Information on the caIiBré-t-ion'équir_)rhent used

The manufacturer procedure was applied (Document PN 34401-%0013, Ch.4).
Standards used to calibrate inspection, measuring and test eguipment are
able to national and international standards.

The following reference standards have been used for calibration:

Asset Number Serial Number Certificate Due date

TES1288 3674901 374498 2024-03-09
TES0494 > M737 2023 ACCR_EO 2024-03-16

"
1=

e Confirmation that all calibration tests have been passed

REFERENCE INSTRUMENT UNDER TEST
INSTRUMENT
APPLIED LOWER ING UPPER RESULT
VALUE LIMIT LIMIT
(N) (N) (N) (1)
20,84 13, 21,1 22,8 ass
30,44 27,4 30, & 33,5 ass
40,72 36,6 40,9 44,¢
20,50 45,5 50,7 55,¢
0,41 54,4 €1,1 66,5 ass
70,36 63,3 71,4 77,4 ass
81,21 73,1 31,7 89,3 pass

e Signatures of authorized personnel

o Verification of certificate completeness

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 88 of 108

Key details about both the tested and calibration devices are accessible through the database.

Key Components:

Configuration File: Allows the end user to modify paths for data, configuration, and output folders.

o Layout Configurator: Provides layout structure information for individual laboratories.

o PDF Parser: Extracts tables, plain text, and images from the provided PDF. Cleans the data by removing
unnecessary whitespaces, adjusting capitalization, and refining table cells. Utilizes two Python libraries,
including Fitz.

o Validator: Compares the extracted information against the guidelines defined by FLEX.

Viewer: Generates a user-friendly overview of certificates that do not comply with the guidelines.

Currently, the system is deployed as an executable file (EXE) that runs locally. Users simply place the documents
to be validated into the folder specified in the document_path configuration and start the EXE. The service
processes each document sequentially, scanning for tables, keywords, and images. Validation results are stored
in log files, and upon completion, a webpage summarizing all failed documents is automatically displayed, which
can be seen in Figure 18.

The service utilizes a rule-based machine learning approach, which has been extensively tested on over 1,000
TESI-issued documents. As a result, it offers a high level of reliability in extracting and validating information. In
cases where the service is unable to process a document, it will be automatically flagged, and an error message
will prompt the user to review the document manually. This ensures that no document goes unchecked and
maintains the accuracy of the validation process.

Table and text extraction capabilities will be further enhanced through the integration of additional test data, allowing
for more accurate and reliable results. Additionally, a web-based interface will be developed to improve accessibility
and usability, enabling users to interact with the service more intuitively. Future updates may also include support
for a wider range of document layouts, ensuring greater flexibility and compatibility with diverse document
structures.

3.6 Real World Data Providers

3.6.1 Intelligent Sensor Boxes

The Intelligent Sensor Box (ISB) as real world data provider enables the measurement of a worker’s physiological
and psychological stress while doing tasks and finally provides information about the worker's estimated resilience.
In general, it is configured based on a set of wearable and also stationary sensors together with Al-based analytics
for assessment and optimization functions. Its application provides a means to assess the human factors as well
as the ergonomics of industrial training and work environments.

The ISB component of the DAI-DSS system architecture primarily collects daily bio-signals from the wearables that
are worn by the workers and connected to the Local Workplace Sensor Network records. A local decision support
system generates the first analytics on the worker's human factors from the Human Factors Intelligent Services
that provides state-of-the-art in terms of relevant metadata via a prepared Ul to the worker. The ISB also enables
the research assistant to view the worker’s biosignals, human factors parameters and current system state via an
expert’s external dashboard. The DAI-DSS Knowledge Base finally has access to necessary data from the ISB via
the dedicated REST API. To ensure data protection, all provided data is anonymized or at least pseudonymized by

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 89 of 108

the Data Anonymization component. The psychophysiological strain of the worker accumulates when (job)
demands, such as time pressure or physical workload are appraised as a threat due to inefficient available
resources to adaptively cope with them. Details of related methods are described in FAIRWork D3.2 and D3.3.

For the computation of the resilience score, in the first stage, the Daily Strain Score (DSC) is calculated. This score
integrates contributions from the Physiological Strain Index PSI* as well as from the Cognitive-Emotional Stress
(CES) score into DSC(n) of day n, squashed by the Sigmoid function to always be within the interval [0,1]. In a
further step, the DSC(n) components of a pre-defined time window — for example, 20 working days — are integrated
in a further expression that downscales more distant DSC(n) with an exponential decay function with t being
another time window for having larger weights for the recent 10 working days. A weighted and normalized sum
would then represent an equivalent of a score for potential aspects of mental exhaustion, or, the need for recovery
(i.e., NFR). Finally, the overall current resilience score RS is computed. Figure 82 provides a sample number of
estimations of physiological and cognitive-emotional strain during a time course of 20 days of a potential worker
together with the integrated resilience score RS. The most recent estimate is uploaded to the DAI-DSS Knowledge
Base for further consideration.

4 FAIRWork Resilience Monitor (Version 0.9) - X

Worker FW01

3

Select Worker

FW01

<

Select Signal(s)

Strain Score{s) [0,10]
s N & o ®

P&l Score

C 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -
[41{CES Score
Day-20 Day-19 Day-18 Day-17 Day-16 Day-15 Day-14 Day-13 Day-12 Day-11 Day-10 Day-9 Day-B Day-7 Day-6 Day-5 Day-4 Day-3 Day-2 Day-1

N

®

Resilience Score

o I = =
= o

5]

Update Data

Resilience Score [0,1]

Update Knowledge Base

o

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3
Close Monitor Day-20 Day-19 Day-18 Day-17 Day-16 Day-15 Day-14 Day-13 Day-12 Day-11 Day-10 Day-9 Day-8 Day-7 Day-6 Day-5 Day-4 Day-3 Day-2 Day-1

Figure 82: FAIRWork Resilience Monitor, with a Sample Number of Estimations of Physiological (blue) and
Cognitive-emotional (red) Strain during a Time Course of 20 Days of a Potential Worker

This resilient score provides then the data for further computational objectives, see section 3.4 or further rationale.

Explainable Al and fairness of Al services in the context of socio-technical environments are key to enabling future,
ethically approved applications of Al for the optimization of production services with human-machine interaction.
Fair algorithms will prevent decisions from reflecting discriminatory behavior. The aim is to gain a better
understanding of collective decision-making processes to tackle new socio-technological challenges where aspects
of decision-making and fairness are important. We need to ensure that people in similar situations are treated
equally and not discriminated against. Examples of unfair decisions are situations where people are discriminated
against on the basis of protected characteristics, such as race, gender, or age.

The computation of the resilience score is based on a computation of the Physiological Strain Index which in turn
is based on an Al-driven estimate of the core body temperature. FAIRWork D3.2 (section 3.3.2; Al-based
Physiological Strain Estimation) describes in detail the methodology of this integrated Al-based service. In general,
multiple models were proposed for the estimation, several of them being represented by regression trees that
implicitly provide full transparency to the human expert. The best of these models was the model with bagged trees.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 90 of 108

Bagging trees is an ensemble technique that consists of combining several regression trees fitted on different
bootstrap samples of the training set. The main advantage of regression trees is their human-readability.
Regression trees not only predict attribute values of targets, but they also explain which attributes are used and
how the attributes are used to reach the predictions.

A further component of the resilience scoring will be integrated on the basis of the Recovery-Stress state (RSS) of
the worker. A measure of the current RSS includes the frequency and amplitude of stress symptoms as well as the
amplitude and frequency of recovery-associated activities. Furthermore, the dimension of bouncing-back effects is
measured based on the concrete responses to the stress symptom data.

Future extensions of this work-in-progress are planned to focus on (i) gaining wearable data from the work at the
manufacturing company, analyzing and evaluating it from the point-of-view of the resilience framework, (ii)
introducing fairness and transparency in methodologies, applying visualization methodologies for intuitive insight
into the analytics’ behavior, and (iii) applying optimization methodology on the data in order to provide best
economical solutions from a long-term monitoring and assessment perspective.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 91 of 108

3.7 Summary of the DAI-DSS Building Blocks

This section aims to provide a comprehensive overview of section 3 summarising all prototypes and building blocks
of the DAI-DSS. The below Table 3 provides a summary of the building blocks along with their corresponding
implemented services and prototypes. This aims to enhance the understanding of the main picture of the FAIRWork
DAI-DSS.

DAI-DSS Building Blocks Implemented Services and Prototypes

e Multi-Agent Orchestrator Configuration
DAI-DSS Configurator o Configuration Framework
e Configuration Integration Framework

e Order Overview Ul Component

e Worker Overview Ul Component

¢ Allocation Proposal Through Al Resource Allocation Service Ul
Component

e Production Planning Service Ul Component

e Truck Loading Ul Component

e Document Transformation Ul Component

e Machine Maintenance Ul Components

e Documents Compliance Ul Components

e (Calibration Document Validation Ul Component

DAI-DSS User Interface

e Workflow-based Orchestration

DAI-DSS Orchestrator
e Multi-Agent-Based Orchestration

e Knowledge Base: ISO 10103-Based Data Repository

DAI-DSS Knowledge Base _
¢ Intelligent Sensor Boxes

e Support Understanding of Decisions through Conceptual Modelling

e Decision Support through Decision Tree

e Resource Allocation using Neural Networks

e Resource Allocation using Linear Sum Assignment Solver

e Production Planning Service with a Hybrid Approach
DAI-DSS Al Enrichment e Resource Allocation MAS-based

e Truck Loading Service

e Support Machine Maintenance using RAG and LLM

e Document Transformation using LLM

e Support Compliance for Clean Room using RAG and LLM

e (Calibration Certification Service

Table 3: Summary of DAI-DSS Building Blocks

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 92 of 108

In addition, a summary of all developed Al services is given in Table 4. They are categorized by their maturity level,
the type of Al, and their reliability. The maturity levels of the Al prototypes can range from:

Initial: This stage corresponds to a conceptual definition of the prototype meaning that the idea is defined,
but no implementation exists. This was not the case for the included Al services within this document.
Basic: This stage corresponds to an experimental implementation meaning that a simple prototype is built to
test core feasibility, but with limited functionality.

Intermediate: This stage corresponds to a functional status, where a working prototype with key features is
implemented but may lack scalability, robustness, or integration.

Advanced: This stage refers to an optimized status, where a well-developed version of the prototype with
performance improvements or partial automation is implemented, and real-world testing and demonstration
by the use case partners are given.

Al-service Maturity Level Type of Al Reliability
Support Understanding of Decisions . .
through Conceptual Modelling Basic Rule-based High
Decision Support through Decision Basic Supervised .Machlne High
Tree Learning
Resource Allocation using Neural Intermediate Artificial Neural Network Medium-High
Networks
Resource AIIo.cat|on using Linear Intermediate Optimization Algorithm High
Sum Assignment Solver
Production Planning Service with a Reinforcement Learning, . .
Hybrid Approach Advanced Constraint Programming Medium-High
Resource Allocation MAS-based Intermediate Multi-Agent System Medium-High
Truck Loading Service Basic Optimization Algorithm Medium
Support Machine Maintenance using Large Language Model, , .
RAG and LLM Advanced RAG Medium-High
Document Transformation using LLM Intermediate Large Language Model Medium
Support Compliance for Clean Room . Large Language Model, . .
using RAG and LLM Intermediate RAG Medium-High
Calibration Certification Service Advanced Rule-based, Algorithm High
Resilience Score Service Intermediate Rule-based, Algorithm High

Table 4: Summary of the Al Services

The reliability differs depending on the type of Al. For rule-based Al it is indicated as a high, as it is deterministic

and reliable for well-defined problems. Supervised ML is also attributed to High as it is reliable in controlled settings
with high-quality data, however, it can degrade with poor data. ANN relates to Medium-High as its performance

Copyright © 2025 BOC and other members of the FAIRWork Consortium

www.fairwork-project.eu

Page 93 of 108

depends on data quality, model architecture, and training. The optimization algorithm is defined as High as it uses
deterministic approaches such as the Linear sum Assignment solver finding always the mathematically optimal
solution. The Hybrid approach using RL and CP is defined as Medium-High as CP is very reliable for problems with
well-defined constraints, while RL can have high adaptability but is less predictable and can struggle with
generalization. MAS approaches also correspond to Medium-High as their performance depends on coordination
mechanisms and the environment's complexity. LLMs are attributed to Medium reliability as they are prone to
hallucinations and lack verification. In combination with RAG, their reliability is improved through retrieval but still
depends on source quality.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 94 of 108

4 PROTOTYPE DEPLOYMENT

This section describes the methodologies for deploying the individual components of the final DAI-DSS prototype.
It presents a comprehensive understanding of the deployment lifecycle, from installation to execution. The
deployment diagram in Figure 83 provides a high-level overview of how the different components and parts of the
prototype are deployed. The deployment can be separated roughly into two parts (1) client devices running the
interfaces and (2) the DAI-DSS prototype environment consisting of multiple servers, applications, and services
working together.

DAJ-DSS Environment

wdevices

Decision Senice Server 1
<processs gl forwards
Apache Server ﬁ’

*execulionEnvignmants
Docker
«sevicss «seniicss aservicen
Olive Microservice Resaurce Allocation Calibration Certificatiol
Controller MAS-based Senice
iservices «xdatabases
Rule-based worker @ fairwork-more-users gl
allocation {PostgreSaL)
[
— services asarices
Decision Tree MAS Orchestrator
Resaurce Allocation

wdevices

Decision Service Server 2

«processr gl
L ||| Apache Server wexeculionEnvignmants waevicen wdevices

Python Knowledge Base Server Laboratroy Environment
«<campenents «camponents —_— xservicen
User Device Resource Allacation Production Planning KEGSEII?ESE»PLM E Resilience Score
wapplications @ using Linear Sum Senics with a e —— || Senice
Webbrowser Assignment Salver Hybrid Approach

acomponents
' Resource Allocation «compenents
«applications
using Neural Networks Intelligent Sensor
ADOxx-based 9 e

modelling tools

fﬁuck Euadmg E
Senice

««««« TenEnviranments
Olive Server
‘ «epplications
ADONIS ADOIT
|
!
<ExEcationEnvITonmEnts
«applicstions AWS
Document Transformation|
using LLM «components aservicen
Configuration Hub g ADOINS Integration @ ~— | awebservices
OpenAl
«applicstions
Support Machine «components asenvicen
Maintenance using RAG Frontend (Piral) ADOIT Integration T
and LLM
<components
sapplications Data Layer gl <} AWSPSmp Function for g
Support Compliance for Werkflaw
Clean Room using RAG
and LLM

Figure 83: Deployment Diagram DAI-DSS Prototype

The Knowledge Base is deployed on a server provided by JOTNE, which runs an instance of their EDMtruePLM
software. It is accessible over an endpoint, allowing to read and save data. These endpoints are then used to
integrate the Knowledge Base and its data with the other components of the DAI-DSS.

JR provides two servers on which decision services and the MAS Orchestrator were deployed. Both servers are
publicly accessible and can therefore interact with other components of the DAI-DSS.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 95 of 108

The Decision Service Server 1 runs some of the decision services, the MAS Orchestrator, and supporting services
like the OLIVE Microservice controller and a PostgreSQL database. The components are run as Docker containers,
easing the deployment as each service can have its own technology stack. Additionally, to support accessing the
services over the internet, an Apache server was installed to manage forwarding the calls to the right service. The
Apache server was used to have a common place to support HTTPS and allow to use of the standard ports from
the outside. The calls are then forwarded to the internal service.

On the second decision service sever, decision services are directly started in a Python environment, using
dedicated ports. The Python environment was set up and shared by the deployed services.

BOC offers its OLIVE Server and the Amazon Web Services (AWS) environment, where it was deployed on its own
services and additional applications. On the OLIVE server, instances of the ADONIS and ADOIT modelling tools
are deployed, which are used within their components. The AWS environment contains the implementation of the
concrete logic for the services developed to tackle the use cases. Additionally, the components for the Ul and the
Configuration components are also deployed here. Last but not least, the applications in the AWS environment use
an OpenAl endpoint, which is run on the environment of OpenAl and called from the services.

The user devices, shown on the left side of Figure 83 is an abstraction of all the devices users can use. Here they
mainly will use the Web browser or ADOxx-based modelling tool to interact with the other deployed components.
The True Loading Services is also implemented to run on user devices as a standalone tool.

Last but not least, the Laboratory Environment is set up in the infrastructure of JR, containing the services and
components to run and use the Intelligent Sensor Boxes. This laboratory environment is set up locally to not send
all private information to the central components, but only the processed and aggregated data is sent to the
Knowledge Base.

Besides the interaction of the deployed components, different Software (SW), Hardware (HW), and Technologies
are required and used. This is summarized in Table 5 for each single deployable component.

(Single deployable)

Component SW /HW Requirements Technology

Hardware requirement AWS SaaS: None
Hardware requirement Local:

e RAM:>16 GB
Configuration Environment © CPU>4 AWS
e HDD:>64Gb OpenAl
Software requirement:
e Node,js

e Pythonv3.11
Hardware requirement, tested on:
e Processor: Intel i7-8550U (1,8 GHz)

e RAM:16GB
OLIVE Microservice Controller | Direct installation: Maven
(as docker and direct e Software Requiemrent; Dockerlmage: tomcat:8.5-
installation) o Java$ jok8

o Tomcat8.5
Docker installation:
e Docker 27.1.1
Hardware Requirement, tested on:
e Processor: Intel i7-8550U (1,8 GHz)
ADOxx based modelling tools e RAM:16GB ADOxx
(Scene2Model, Bee-Up) e Storage: about 500 MB SQLite
Software requirements:
e Everything is installed with the tool

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 96 of 108

Hardware Requirement:

e Windows server OS

e Minimum Cores 10

e RAM: minimum 16 GB
Knowledge Base e Storage: about 500 GB Windows x64 Installer
Software requirements:

e Tomcat 10.1

e Java JRE or JDK version SE 17+ 64 bit

e NET Framework 4.5+

Software requirements:

MAS-Orchestrator e Pythonv3.11 Docker
MAS-Allocation service Software reqmremen.t s Docker
e Javaversion 8
Calibration Certification Software requirements: Based on Open Source
Service e Pythonv3.9 or later Libraries
Hardware:
e CPU: At least one core with a clock speed of 2 GHz
or higher.
. e Memory: A minimum of 8 GB RAM.
Lm-Sum;\S”oOI ZaGtri;zr Worker | sitiware: ! Google OR-Tools
e Python: Version 3.9 or later.
Package Repository Access:
e Access to PyPI (Python Package Index) or a similar
repository for installing Python packages.
Software:
e Python: Version 3.9 or later.
e Package Repository Access: Access to PyPI
) Lo Python Package Index) or a similar repository for
Pm(:_llm".m Planning with i(nsytalling Pytho% packaées. Posten Google OR-Tools
ybrid Approach Hardware:
e CPU: At least one core with a clock speed of 2 GHz
or higher.
e Memory: A minimum of 8 GB RAM.
Hardware requirement, tested on:
e Processor: Intel i7-8550U (1,8 GHz)
_ e RAM: 16 GB
Rule-based worker allocation | goftware:
Swagger

(as docker or standalone) e Python: 3.9 (packages are provided in the projects as
requirements. txt)
Docker installation
e Docker 27.1.1
Hardware requirement, tested on:
e Processor: Intel i7-8550U (1,8 GHz)

Decision Tree.Resource Softw;re' RAM: 16 GB Scikti-learn (Python
Allocation : . . . Library)
e Python: 3.10(packages are provided in the projects Swagger
(as docker or standalone) as requirements.txt)

Docker installation
e Docker27.1.1

Table 5: Overview of the Individual Deployable Components

41 Deployment of Configuration Integration Environment, Workflow
Engine and User Interfaces

Both the configuration and integration environment and the workflow engine are deployed in AWS as a combination
of serverless AWS Lambda functions and AWS EC2 instances and rely on AWS DynamoDB for file storage and on
AWS API Gateway for the exposure of the APIs. The Ul components are deployed in an AWS Bucket and distributed
through AWS CloudFront CDN.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 97 of 108

In the context of the project, other local deployment options have been explored in order to not be bound to the
AWS environment. In the following Table 6: Deployment Components of Configuration Environment are listed as
the required components used for AWS deployment and Local Docker-based deployment.

Components

Function Execution

Function Lookup
Virtual Machine

System
Maintenance

NoSQL DB
Object Storage

Backup and
Recovery Service

Secrets
Management

Parameter Store

DNS Management
and Routing Service

Content Delivery
Network (CDN)

API Gateway

Resource and
Provisioning
Management

AWS
Serverless Architecture

Lambda (Node.js execution)

AWS Lambda Environment

AWS EC2

AWS shared responsibility model

DynamoDB
S3

AWS Backup

AWS Secrets Manager

AWS SSM

AWS Route 53

AWS CloudFront

AWS API Gateway

AWS Cloudformation,
OLIVE Deployment Script

Local
Docker Compose

Express with Node.js (Docker Image)
OpenFaaS

Own Express Service

Docker

manual

CouchDB (Docker Image)

MinlO (Docker Image)

Own (insecure) Express Service

Own Express Service and/or global
environment variables

Cloudflare

Own file-storage-service that can also
deliver files.

Traefik (Docker Image)

Local Docker Image Registry,

OLIVE Deployment Script

Table 6: Deployment Components of Configuration Environment

In order to automate the deployment of the configuration environment, specific deployment scripts have been
created for both the AWS and the local deployment environment. In this way, no manual operations are performed
and the complete deployment process is fully integrated into the CI/CD pipeline.

The configuration environment allows the user also to automate the deployment and registration of the different Ul
components in the Ul configuration environment (Figure 84) when such components follow a specific format. In this
way, the user has to only provide the name of the Ul component, the category, and the label to fit in the Ul
configuration environment, and the zip package of the Ul source code, which should be React-based, and the

Copyright © 2025 BOC and other members of the FAIRWork Consortium

www.fairwork-project.eu

Page 98 of 108

https://aws.amazon.com/lambda/
https://nodejs.org/en
https://expressjs.com/
https://nodejs.org/en
https://hub.docker.com/_/node
https://www.openfaas.com/
https://aws.amazon.com/lambda/
https://expressjs.com/
https://aws.amazon.com/ec2/
https://www.docker.com/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/dynamodb/
https://couchdb.apache.org/
https://hub.docker.com/_/couchdb
https://aws.amazon.com/s3/
https://min.io/
https://hub.docker.com/r/minio/minio
https://aws.amazon.com/backup/
https://aws.amazon.com/secrets-manager/
https://expressjs.com/
https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html
https://expressjs.com/
https://aws.amazon.com/route53/
https://www.cloudflare.com/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/api-gateway/
https://traefik.io/
https://hub.docker.com/_/traefik
https://aws.amazon.com/cloudformation/

system automatically build, deploy, and assign the component to a new entry in the Ul builder part of the
configuration environment.

Create New Component

Card Display Name *

Workers Allocation DMN

Component Type * Component Name *

Eu workers-allocation-dmn

Task of the Component
© Ul Component Ul Function
Component Sources *

| Choose File |ai-resource-allocation...ui-component-main.7z

Upload

Figure 84: Ul Deployment and Registration

This functionality is accessible from the “Manage Ul Components” tile from the Configuration environment.
4.2 Al-services Deployment

4.2.1 Decision Service Sever 1 and 2

The deployment of Al services within the project involves hosting and accessibility through dedicated servers
provided by Joanneum Research. We have two servers: Decision Service Server 1 and Decision Service Server 2.
Both of the servers have an Apache2' installed to be used as a reverse proxy, with an SSL certificate to enable
HTTPS. The open ports for HTTP requests are 80 and 443 and port 20 is open to connect via SSH and manage
the server itself.

On Decision Service Server 1 a Docker' environment was set up, where the individual services and additional
components are run in Docker containers. Additional components are for example the OLIVE microservice
controller or the user database used by MORE. The containers can then be internally called by other components
or made accessible to the outside by adding forwarding rules to the Apache2 server.

On Decision Service Server 2, an Anaconda environment management system is used, with dedicated Python
environments for each deployed service. Each service runs within its own tmux session for better process
management and isolation. The services are hosted as Web Server Gateway Interface (WSGI) servers, enabling
Python-based Flask web applications to interact seamlessly with the Apache web server in a standardized manner.
The Apache server acts as a reverse proxy, forwarding incoming traffic to the respective services.

16 https://httpd.apache.org/ (accessed: 8.1.2025)
17 https://www.docker.com/ (accessed: 8.1.2025)

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 99 of 108

https://httpd.apache.org/
https://www.docker.com/

This setup was chosen to separate the runtime environments of the different services and allow each of them to
use the best-fitting technology stack. The containers can also be configured to restart automatically if a problem
occurs and if need be, the service can be started multiple times to scale the application.

The service is developed in Python 3.12 and comprises multiple components:

o PDF Parser: Utilizes fitz, Camelot, and pandas for efficient document processing.
o Validator: Built using standard Python libraries.
o Viewer: Leverages webbrowser and yattag for content display.

The service, making the decision, and offering the endpoint are deployed on Decision Service Server 1, with the
environment as described there. This subsection contains additional, specific information about the Model-Based
Decision Experiments, like where the code can be found or where the modelling tool and the extensions for the
rule-based and decision tree experiment can be downloaded.

The modelling tool component of the decision tree experiment is unchanged and information on how to use it can
be found here:

e https://code.omilab.org/research-projects/fairwork/decision-services/decision-tree-resource-mapping

The modelling tool prototype for the rule-based approach has two versions, where one contains everything including
the functionality to automatically instantiate a decision service in a running OLIVE controller instance directly from
the modelling tool and the other the functionality to export everything to manually instantiate a decision service.
The difference is that the functionality for the manual creation can be imported into an installed Bee-Up instance
and the automated instantiation needs an ADOxx instance which must be configured, needed more effort to set-

up.
A description on how both of this prototype versions can be used, is available on its GitLab repository:

e https://code.omilab.org/research-projects/fairwork/decision-services/bee-up-dmn-extension

The worker allocation services with the neural networks approach (see section 3.5.3) and the LinSmSovler (see
section 3.5.4), as well as the Production Planning Service with the hybrid approach (see section 3.5.5) are deployed
on Decision Service Server 2. The deployment setup is the same as before. However, the production planning
service was added and tested.

The code and setup information for the services are published online on GitHub:

e https://github.com/Alexander-Nasuta/FAIRWork-Al-Service-Catalog

A RESTful API was developed to provide access to the results of the Workload Balance use case scenario using
the Multi-Agent approach. This is a secured API developed in Python through the Flask framework and provides
two endpoints to the users, as shown in Figure 85. The API also has administrative endpoints that are only
accessible to the administrator and uses JWT — JSON Web Tokens - to protect the endpoint of the worker allocation

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 100 of 108

https://code.omilab.org/research-projects/fairwork/decision-services/decision-tree-resource-mapping
https://code.omilab.org/research-projects/fairwork/decision-services/bee-up-dmn-extension
https://github.com/Alexander-Nasuta/FAIRWork-AI-Service-Catalog

results. To do so, it is necessary to make a successful login by providing a valid username/password in the login
endpoint. When that happens, a JWT token is created to be used in the workers' allocation endpoint.

/more/api/vl/login User Login v

AET /more/api/vl/workers—-allocation Getallocation results v

Figure 85: Available Endpoints to Registered Users

For the production environment, a Web Server Gateway Interface (WSGI) has to be used: in this case, Waitress,
operating on local port 5050. This server, running the web app, does not have direct connectivity with the outside
world. Instead, it uses an Apache proxy server configured on the machine that can serve communications through
port 443. All incoming and outgoing connections go through this Apache server, adding an extra layer of security
to the communications.

Deployment-wise, a set of docker services was defined to establish the API with secure connectivity to achieve
service integration within the FAIRWork platform. This includes the creation of a Docker image for the API, hosted
in Docker Hub, and the necessary database to manage credentials information. The containerization of the web
app allows the API to run continuously on the server without introducing any conflicts with other services running
on the same machine.

The APl is already running on the server, using SSL certification through the Apache server to encrypt/protect the
communications.

4.2.2 AWS-deployed Al-services

The three Al-services Support Machine Maintenance using RAG and LLM, Document Transformation using LLM ,
Support Compliance for Clean Room using RAG and LLMare deployed in the AWS environment which corresponds
to the description of deployment in the section 4.1.

4.3 Cost Factors for LLM Deployment

For some services where LLMs are integrated, it involves LLM deployment costs. These depend on factors like
model size and type, API pricing, hardware, and the utilization of add-ons such as vector databases and RAG.
When the LLM is accessed via API there is no need for hardware and can be easily integrated or scalable but the
cost scales with usage which usually LLMs (e.g., OpenAl, Google Gemini, Anthropic) charge per token (input +
output). For example, GPT-4-turbo API costs $0.01 per 1K input tokens and $0.03 per 1K output tokens. On the
other hand, Self-Hosting and locally deployed alternatives include costs arising from the hardware, electricity, and
maintenance. This refers mainly to running open-source LLMs like LLaMA, Falcon, or Mistral enabling full control
and privacy over the LLM. Additional costs emerge when using optimization techniques, fine-tuning, or RAG. RAG
can add further monthly costs for the vector database storage and retrieval depending on the provider. For example,
Pinecone is free for 1M vectors, then $0.096 per hour per pod while the open-source ChromaDB removes cloud
fees but requires server maintenance as it is self-hosted.

Currently, the LLM is based on Cloud APIs by using OpenAl and GPT-40. The API key is provided by the Al service
provider resulting in costs for input tokens of $0.15 per 1 million tokens and output tokens of $0.60 per 1 million
tokens. For the utilized vector database, AWS OpenSearch is calculated with 0,05$ per hour per instance and 0,1$
per month per GB. Also, AWS infrastructure costs including computing resources, storage and data transfer arise.
Future steps and decisions can reflect wether a changing to a locally hosted LLM by the use case partner or using
API key provided by the use case partners themselves.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 101 of 108

4.4 Knowledge Base Deployment

The Knowledge Base (EDMtruePLM) web application contains a front-end, developed in JavaScript with the VUE js
framework, and a back-end, developed in Java with the Spring Boot framework. Front-end and back-end

communicate with each other through the REST API of the repository.

Each call from the front end goes through the back end to the EDMserver. The backend may use several calls to
EDM for one REST API call. The backend and the EDMserver communicate with each other through an internal
TCP protocol, that is, the Java implementation EDMconnect. The web application, that is, the PLM application GUI
is compatible with most modern web browsers. All the required components to run the knowledge Base were
deployed on a standalone virtual machine running with Windows server operating system.

L]
b Fy
:

)

Apacha Tomeat Web server

HTTR i
Softwars client fe————— RESTAFI

v
‘ Backend / Spring boot
framewark

Express Data Manager (client/server)

oxpross X [EDM Virtual
H Machine

emer RoUtE { odmi

v
oo EDMI
edmiRemate

EDM Database

Express X

Template API
Converters
DEXServices

EDMplcs Services

Figure 86: Knowledge Base Internal Architecture

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu

Page 102 of 108

5 EXTENDING DAI-DSS FOR NEW USE CASE
SCENARIOS

5.1 Extending Workflows and User Interfaces

The modular architecture of the FAIRWork DAI-DSS enables it to support multiple use cases. Examples of this
modularity include the ability to add and extend workflows and Ul elements as needed, as well as the adaptable
functionality to add and remove tiles from the configuration platform. In general, the configurator component should
speed up and help with the system's (re-)configuration process. As outlined in the section 3.2.1, new workflows can
be added to the workflow engine, or tasks can be added or removed to modify workflows that have already been
created. Additionally, other forms of orchestration besides the MAS Orchestrator and workflow-based orchestration
such as agentic workflows must be considered. To integrate services into workflows, tasks involving the calling of
services may require input or output adaptations in addition to having a public endpoint. To access them in a
configurable web application, existing Ul components can be updated, or new Ul components can be created and
added to the Ul component pipeline.

5.2 Extending Decision Services through Conceptual Modelling

One perspective during the design of the DAI-DSS was the ability to adapt it to new decision scenarios, increasing
the flexibility of the system. In FAIRWork we chose a model-based configuration approach to support this flexibility,
which is covered by the Configuration component and uses the corresponding design methodology (D2.1)
combined with the three-layered modelling framework introduced in D3.2.

Conceptual, diagrammatic models are used to capture knowledge in a human and machine-understandable way,
which are then used as input for the configuration, either the models can be directly used within the service, or they
support the human users in understanding the decision scenario and then configure the DAI-DSS accordingly.
Therefore, the models are either used as design artifacts to support the understanding of the users or they are
directly used within the service as input for the decision services.

To enable the DAI-DSS to support a new decision scenario, first, the scenario must be understood. Therefore, a
physical workshop is held, where domain experts with various backgrounds come together and discuss the idea on
a high-abstraction level and identify the parts of and influences on the decision that must be considered, e.g., the
parameters considered in the decision, which people are involved or where possible problems with the need for
information or decision may lie.

Haptic figures are used within the workshops to foster creativity and co-creation between the participants. The
created haptic models are then automatically digitalized and enriched to capture the knowledge and establish a
representation of the common understanding of the decision scenario, which then later is used as input for creating
more detailed models, describing the decision more precisely and allowing its integration in the DAI-DSS. In
FAIRWork we used BPMN and DMN modelling languages. These models belong to the identification layer of the
three-layered approach.

These models are then enriched, or new models are created to specify the concrete conditions for the decision,
including technical details, needed for establishing the decision service within the DAI-DSS. Here the models form
the identification layer are used as the basis, to reuse the already captured knowledge and establish a link between
the models on different abstraction levels. This link is used to find models that belong together enabling to provide
them to stakeholders, facilitating their understanding.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 103 of 108

In the last layer, the collected knowledge is then used to configure the DAI-DSS to offer decision support for a
concrete scenario. Depending on the service, the modelled information is directly used as input or manually
translated by human users.

For example, the experiment introduced in the section 3.5.1 uses DMN models to describe the decision logic in the
form of its structure and the rules defined in decision tables. The Bee-Up modelling tool, used for creating the
models, was extended to allow for saving technical information, enabling to direct establish a decision service in a
connected OLIVE controller. Through this new decision services based on rules can be created, without the need
for excessive technical knowledge, but by focusing on the decision that should be made.

For the machine maintenance use case and the corresponding service, as introduced in the section 3.5.8. Here
models created with ADOIT are connected to a concrete service, which uses modelled information to create
answers to asked questions in natural language. To extend the answers that can be provided the modelled
information must be changed or enhanced. Or a new service with new connected models can be created, enabling
the DAI-DSS to provide answers for different scenarios.

Therefore, the extension of the DAI-DSS using conceptual modelling is based on two parts that must fit together.
On one hand, the modelling method and the corresponding tool must be able to capture the needed information.
On the other hand, the DAI-DSS must contain configurable services, that correspond to the concepts from the
modelling tool and can be configured based on the captured knowledge. Or that services go a step further and can
understand the models directly to use them to produce fitting answers to asked questions.

5.3 Extending DAI-DSS Capabilities through Al-Enrichment Services

Extending DAI-DSS capabilities through Al-Enrichment services The services are designed for specific scenarios.
Depending on the specification depth, the existing services can be adapted to new scenarios with or less effort.
Worker allocation or production plans for different plants must be analyzed. In case the planning works with similar
variations and constraints, the services might be used almost exactly as they are now. However, plants can work
differently and have different demands. The adaptions can be more severe if the differences are bigger.

As the connection to the different components of the FAIRWork prototype are standardized, it is possible to connect
existing or separately developed algorithms as services to the orchestrator and with that to the Ul and the
knowledge base. Therefore, the algorithm must get a http-wrapper that allows the algorithm to be triggered via an
http-request. The orchestrator must know of the algorithm as a new service in the system and must know about the
necessary data. With that, the orchestrator gets the ability to create the json that includes the necessary data for
this algorithm. With that, the algorithm becomes a new service in the system.

Numerous Al services adhere to the Gymnasium standard for Reinforcement Learning (RL), a framework for solving
various tasks. This approach allows the underlying algorithms to be easily trained on new use cases without
requiring changes to the learning algorithm itself. The only necessary adjustment is the environment, which refers
to the formal model of the specific use case. In addition to RL, we provide a library compatible with the Gymnasium
API that facilitates Monte Carlo Tree Search (MCTS). The library includes examples and test cases for well-known
RL environments such as "FrozenLake" and "CartPole," as well as resource allocation use cases from the project.
These implementations demonstrate that the algorithm is versatile and capable of finding solutions to a wide range
of use cases and environments.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 104 of 108

5.4 Extending Real-World Data Provisioning

Connecting a sensor box to sensors is straightforward and intuitive. The sensors are added to the sensor box with
a little configuration. It works like a simple ‘plug-and-play’ system that allows new sensors with the appropriate data
interface to be added.

5.5 Extending the Knowledge Base

The Knowledge Base is flexible for allowing the addition of new classification types with their respective attributes
using the Reference data definition from the dedicated Graphical Ul. Depending on the use cases, the project's
breakdown structure can be expanded to include additional elements for storing necessary data to support a use
case. Since the Knowledge Base offers standardized REST API services with swagger documentation for CRUD
operations, querying the data from other DAI-DSS components requires minimal adjustments to the path and query
parameters, ensuring seamless access to the updated information.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 105 of 108

6 SUMMARY, CONCLUSION AND OUTLOOK

The documentation outlines the foundational elements and architecture of the system, as established in “D4.1 -
DAI-DSS Architecture and Initial Documentation and Test Report” and “D4.2 — Initial DAI-DSS Prototype”. The
development and deployment of the Final DAI-DSS Prototype have integrated various Al-driven decision support
capabilities, addressing multiple industrial use cases. The final prototype extends the initial state, demonstrating
flexibility across applications such as worker allocation, production planning, machine maintenance, and
compliance documentation and validation. The structured approach based on the DAI-DSS High Level Architecture
ensures modularity, and adaptability, which are critical for practical industrial implementation. This document, first,
provides a comprehensive overview of the current problem settings and our DAI-DSS solution suggestions. Then
the building blocks, their general structure and integral role within the system, and the individual prototypes for each
block are described.

The DAI-DSS Ul serves as the primary interaction layer, providing decision-makers with visualizations and control
mechanisms. It integrates multiple components, including order overviews, worker allocation illustrations, chat
interfaces, and validation tracking dashboards, ensuring understandability and accessibility by the users.

The DAI-DSS Orchestrator plays a central role in managing workflows and microservices. It enables seamless
communication between various Al components, ensuring efficient execution of decision-support tasks. The
workflow-based orchestration and multi-agent orchestration provide scalability and flexibility in handling complex
industrial scenarios and demonstrate two distinct approaches to orchestrate.

The DAI-DSS Configurator allows the configuration of the Ul and Orchestrator supporting the system's adaptability
and integration with external systems.

The DAI-DSS Knowledge Base acts as a structured repository. The Knowledge Base stores essential data,
including worker profiles, production records, production line details and maintenance documents. It enables the
Orchestrator and Al services to access and process relevant information enhancing decision accuracy.

The DAI-DSS Al Enrichment covers a list of developed Al prototypes that have been incorporated into this building
block. It includes many different services with different maturity, types of Al, and reliability. Neural Networks, Multi-
Agent Systems, Constraint Programming, and Decision Trees are used for resource allocation and production
planning. RAG and LLMs are applied for document transformation, information access to support compliance with
cleanroom regulations, and maintenance support. Rule-based approaches are used for document verification or
worker allocation.

The FAIRWork Final DAI-DSS Prototype demonstrates how effectively these building blocks are integrated into a
cohesive system. Key results include the proposal of scalable decision support system based on the modular
architecture to ensure adaptability across different industrial applications. Different Al integrations demonstrate a
hybrid approach combining rule-based logic, machine learning, and agent approaches and the reflection of their
relibaility target to enhance transparency for decision makers. Also, the system's microservices-based structure
allows for extensions, ensuring interoperability and extendibility for future adaptability to new Al models and
datasets.

The DAI-DSS demonstrates its capability as a decision support system by integrating Al techniques, data and Uls
for decision making problems to bring humans and Al together. The modularity of the architecture allows for
continued evolution, ensuring scalability and applicability across various industrial domains. In particular, the
established foundation and the covered problem settings and use cases target to benefit arising robotic use case
challenges in manufacturing e.g. using the machine maintenance prototpye to support the maintenance of robots,

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 106 of 108

assist decisions to optimize the robot-to-task and line allocation while considering human robot interactions, check
compliance regulations for robots and their different types, support the configuraiton of robots efc.

The structured approach to data handling, workflow orchestration, and Al-driven decision-making has set a
foundation for future advancements in Al-based decision support systems. While ongoing enhancements in data
integration and Al reliability are researched, the prototype marks a step toward intelligent, explainable, and scalable
decision-support solutions for industrial applications. Also, for future outlook, the FAIRWork DAI-DSS prototype
aims to mark one pathway and contribution to an overall European Al Reference Architecture to raise
competitiveness and technological sovereignty. The DAI-DSS architecture illustrates one way to implement
different architectural elements by a set of European organizations.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 107 of 108

7 REFERENCES

References are included as footnotes within the text.

Copyright © 2025 BOC and other members of the FAIRWork Consortium
www.fairwork-project.eu Page 108 of 108

	1 Introduction
	1.1 Purpose of the Document
	1.2 Document Structure
	1.3 Change History

	2 FAIRWork Use Cases
	2.1 Assist Decisions about Fair Worker Allocation
	2.2 Assist Decisions about Production Planning
	2.3 Assist Decisions for Truck Loading
	2.4 Improve Information Access to Support Maintenance
	2.5 Enhance Documentation, Validation and Information Access
	2.5.1 Improve Reliability of “Documentation about Quality Check”
	2.5.2 Support Validation of Calibration Documents
	2.5.3 Improve Information Access to Cleanroom Compliance Requirements

	3 Building Blocks and their Integration
	3.1 Integrating User Interfaces
	3.1.1 Order Overview UI Component
	3.1.2 Worker Overview UI Component
	3.1.3 Allocation Proposal through AI Resource Allocation Service UI Component
	3.1.4 Production Planning Service UI Component
	3.1.5 Truck Loading UI Component
	3.1.6 Machine Maintenance UI Component
	3.1.7 Document Transformation UI Component
	3.1.8 Document Compliance UI Component
	3.1.9 Calibration Document Validation UI Component
	3.1.10 Outlook

	3.2 Orchestration of Microservices
	3.2.1 Workflow-based Orchestration
	3.2.1.1 Defining Services and Workflows
	3.2.1.2 Testing workflows
	3.2.1.3 Storing and Using Defined Workflows
	3.2.1.4 Simplify the Definition of Linear Workflows
	3.2.1.5 Demonstrator Example

	3.2.2 Multi-Agent Orchestration
	3.2.2.1 Login Endpoint
	3.2.2.2 Microservices Results Endpoint

	3.2.3 Outlook

	3.3 Integrating Configuration
	3.3.1 Multi-Agent Orchestrator Configuration
	3.3.2 Configuration Framework
	3.3.2.1 Decision Models with BPMN
	3.3.2.2 Configuration of Decision Services Experiment

	3.3.3 Configuration Integration Framework
	3.3.3.1 Configuration of Services
	3.3.3.2 Configuration of Workflows
	3.3.3.3 Configuration of User Interfaces

	3.3.4 Outlook

	3.4 Integrating the Knowledge Base
	3.4.1 Reliability
	3.4.1.1 Definition of Reliability for a Data Source
	3.4.1.2 Objectives of the Reliability of Knowledge Base
	3.4.1.3 Reliability Aspects Covered by Knowledge Base (ISO 10303)
	3.4.1.4 Implementation Approach

	3.4.2 Outlook

	3.5 Integrating AI-Services
	3.5.1 Support the Understanding of Decisions through Conceptual Modelling
	3.5.1.1 Prerequisite
	3.5.1.2 Testing the Existing Endpoint
	3.5.1.3 Creating a New Decision Endpoint with Conceptual Modelling
	3.5.1.4 Reliability
	3.5.1.5 Outlook

	3.5.2 Decision Support through Decision Tree
	3.5.2.1 Reliability
	3.5.2.2 Outlook

	3.5.3 Resource Allocation using Neural Networks
	3.5.3.1 Reliability
	3.5.3.2 Outlook

	3.5.4 Resource Allocation using Linear Sum Assignment Solver
	3.5.4.1 Reliability
	3.5.4.2 Outlook

	3.5.5 Production Planning Service with a Hybrid Approach
	3.5.5.1 Reliability
	3.5.5.2 Outlook

	3.5.6 Resource Allocation MAS-based
	3.5.6.1 Reliability
	3.5.6.2 Ethical Watchdog Agent
	3.5.6.3 Outlook

	3.5.7 Truck Loading Service
	3.5.7.1 Reliability
	3.5.7.2 Outlook

	3.5.8 Support Machine Maintenance using RAG and LLM
	3.5.8.1 Reliability
	3.5.8.2 Outlook

	3.5.9 Document Transformation using LLM
	3.5.9.1 Reliability
	3.5.9.2 Outlook

	3.5.10 Support Compliance for Clean Room using RAG and LLM
	3.5.10.1 Reliability
	3.5.10.2 Outlook

	3.5.11 Calibration Certification Service
	3.5.11.1 Reliability
	3.5.11.2 Outlook

	3.6 Real World Data Providers
	3.6.1 Intelligent Sensor Boxes
	3.6.1.1 Reliability
	3.6.1.2 Outlook

	3.7 Summary of the DAI-DSS Building Blocks

	4 Prototype Deployment
	4.1 Deployment of Configuration Integration Environment, Workflow Engine and User Interfaces
	4.2 AI-services Deployment
	4.2.1 Decision Service Sever 1 and 2
	4.2.1.1 Calibration Certification Service Deployment
	4.2.1.2 Deployment of Model-based Decision Experiments for the Rule-based Resource Allocation and Decision-Tree Service
	4.2.1.3 Deployment of Worker Allocation Services and Production Planning Service
	4.2.1.4 MAS-based Service Deployment

	4.2.2 AWS-deployed AI-services

	4.3 Cost Factors for LLM Deployment
	4.4 Knowledge Base Deployment

	5 Extending DAI-DSS for New Use Case Scenarios
	5.1 Extending Workflows and User Interfaces
	5.2 Extending Decision Services through Conceptual Modelling
	5.3 Extending DAI-DSS Capabilities through AI-Enrichment Services
	5.4 Extending Real-World Data Provisioning
	5.5 Extending the Knowledge Base

	6 Summary, Conclusion and Outlook
	7 References

